

Albany 76 Festing Street Albany WA 6330 T 0447 446 343 Perth Dilhorn House 2 Bulwer Street Perth WA 6000 T (+61) 8 9227 2600 F (+61) 8 9227 2699

22 November 2023

Paul King Frenchmans Bay Albany Pty Ltd PO Box 518 SUBIACO WA 6904

Dear Paul

CONDITION 13 LDP: INFILTRATION TESTING – PROPOSED DEVELOPMENT OF LOTS 1 AND 2 FRENCHMAN BAY ROAD, FRENCHMAN BAY

BACKGROUND

Frenchmans Bay Albany Pty Ltd is planning to construct a tourism development on Lots 1 and 2 Frenchman Bay Road, Frenchman Bay (the Site). The Site comprises Lot 1 (1.8987 ha) and Lot 2 (1.3607 ha). The landowner has developed a Local Development Plan (LDP) which is included in Attachment A.

A previously approved LDP (Attachment B) included several conditions, including:

13. Prior to submitting any development application for the tourist development, in-situ soil infiltration testing shall be undertaken to the satisfaction of the Department of Water and Environmental Regulation. If required, the Site and Soil Evaluation Report shall be updated to reflect amended land application areas and shall be submitted to the City of Albany for approval.

In 2022, Biodiverse Solutions undertook a Site and Soil Evaluation (SSE) (Attachment C) which included infiltration (permeability) testing at two locations as follows:

In-field permeability testing was conducted on the 25th October 2022 at 2 locations within the proposed land application areas (Figure 9). Permeability testing was conducted using the Talsma-Hallam method. Hydraulic conductivity at IT1 (Figure 9) was found to be 4.03m/day (4.7 x 10-5 m/sec) and hydraulic conductivity at IT2 was found to be 1.21m/day (1.4 x 10-5m/s), the hydraulic conductivity raw data and calculations is shown in Appendix C. Both hydraulic conductivities are considered to be rapid as shown in Figure 7. The hydraulic conductivity found at IT1 was found to be consistent with that of Soil Category 1 - Sand/gravel and the hydraulic conductivity at IT2 was found to be consistent with that of Soil Category 3 – Loams as per Table L1 of AS/NZS 1547:2012. The lower hydraulic conductivity encountered at IT2 was likely due to the compaction of the soil at this location due to vehicle movement given its close proximity to the site entrance. The soil at this location was also impacted by the presence of the surrounding established Norfolk pines, with soil mounding evident here due to the pine tree's root system. The soil hydraulic conductivity at IT1 within natural bushland was more indicative of that likely encountered across the majority of the site.

VANCOUVER SPRINGS CATCHMENT AND DEVELOPMENT EXCLUSION AREA – PROPOSED DEVELOPMENT OF LOTS 1 AND 2 FRENCHMAN BAY ROAD, FRENCHMAN BAY

FIGURE 7: HYDRAULIC CONDUCTIVITY OF SOIL TYPES

Source: Artiola et al, 20041

Soil testing by Landform Research for six drill holes (2008) identified relatively homogeneous soils comprising Quaternary coastal, aeolian sands (from 0m BGL to between 6.5 and >16 m BGL).

Therefore, infiltration and/or permeability rates for the current LDP are likely to be similar to those measured by Biodiverse Solutions. The range is considered to be acceptable for infiltration of treated waste water, especially if irrigation areas have plantings or landscaping to intercept the water.

CONCLUSION

The infiltration rates previously identified are considered to be representative of soils found in the LDP area and are suitable for infiltration of treated waste water. It is considered that the information satisfies Condition 13.

¹ Environmental Monitoring and Characterization (2004) edited by Janick F. Artiola, Ian L. Pepper, Mark L. Brusseau. Elsevier Press.

VANCOUVER SPRINGS CATCHMENT AND DEVELOPMENT EXCLUSION AREA – PROPOSED DEVELOPMENT OF LOTS 1 AND 2 FRENCHMAN BAY ROAD, FRENCHMAN BAY

If you have any queries regarding this assessment, please contact the undersigned on 0447 446 343 or <u>melanie.price@auroraenvironmental.com.au</u>.

For and on behalf of Aurora Environmental

Mulanie Frie.

Melanie Price

Principal Environmental Scientist (Director)

Attachments

- A. Lots 1 and 2 Frenchman Bay Road, Frenchman Bay Proposed Local Development Plan
- B. Currently Approved LDP
- C. Biodiverse Solutions (2022) Site Soil Evaluation

ATTACHMENT A

LOTS 1 AND 2 FRENCHMAN BAY ROAD, FRENCHMAN BAY – PROPOSED LOCAL DEVELOPMENT PLAN

BUILI 1. 2. 3. 4. 5. 5. 6. 7. 8. 9.	DING TYPES LODGE GARAGE ALFRESCO GREAT ROOM 2 STORY PODS BBR SHED GLAMPING TENTS REFUGE	FOOT PRINT 300m2 80m2 80m2 200m2 30m2 200m2 200m2 30m2 30m2 120m2	NO. OF UNITS 1 1 1 6 2 1 6 1	
NO. C NO. C NO. C	OF PEOPLE OF BEDS OF PARKING BAYS		48 24 34	
	BUILDINGS			
	WATER TANKS No. 2x F	RC140 3xRC80	TOTAL 831,430L	.t
	FIRE WATER TANKS No	o. 1x RC80 1xRC20	TOTAL 144,474L	.t
	WALK PATHS			
	ROADS			
	- Vancouver springs setba	ck		
	- 2061 Coastal Erosion haz	zard line		
	 75m Horizontal setback datum 			
	 Single story development setback 			
	 Lot Boundary realignment 			

- – - Refuge area

Rev	Description	Date			
CODE	SUITABILITY DESCRIPTION				
STATUS	PURPOSE OF ISSUE				
PROJECT 1823 FRENCHMAN BAY ROAD, FRENCHMANS BAY					
CLIENT					
HUB PROPERTY GROUP					
TYSON HARRISChecker01/23/07SCALE (@ A1)PROJECT NUMBER1 : 1000Project NumberDRAWING NUMBERREVA100Image: Constraint of the second secon					
I					

ATTACHMENT B

CURRENTLY APPROVED LDP

Our Ref: LDP1/PA112029/LDP1 Cross Ref: Enquiries: Dylan Ashboth Planning Officer

9 January 2023

Ayton Planning PO Box 5476 Albany WA 6332

Dear Sir/Madam

PROPOSED LOCAL DEVELOPMENT PLAN - LOT 1 & 2 FRENCHMAN BAY ROAD, FRENCHMAN BAY WA 6330

I am pleased to advise that your application for Local Development Plan - Lot 1 & 2 Frenchman Bay Road, Frenchman Bay and associated provisions has been approved.

You are advised that prior to commencing construction works, any relevant planning conditions must be fulfilled and a building permit obtained. Please note that your proposal may be required to comply with:

- The Building Code of Australia;
- Australian Standard 1428 Design for access and mobility; and
- The Disability (Access to Premises Buildings) Standards 2010.

Development is also required to comply with all relevant environmental health regulations. Please see the attached information sheet for further detail.

Should you have any queries or wish to discuss this matter, please do not hesitate to contact me on 6820 3061 or via email <u>planning@albany.wa.gov.au</u>.

Yours faithfully

Dylan Ashboth Planning Officer

Local Development Plan No. 1 Provisions for Lots 1 and 2 Frenchman Bay Road, Frenchman Bay (Tourist Development, Caravan Park (Glamping) And Restaurant)

<u>Heritage</u>

- 1. Future development of the LDP1 area needs to ensure that the heritage significance of the site and adjacent heritage-protected places *Frenchman Bay Whaling Station (ruin)* (P16612) and *Kep Mardjit / Vancouver Spring & Dam* (P15602) is retained.
- 2. Any proposed works within the curtilage of adjacent heritage-protected places shall require submission of a development application, including formal referral to the Heritage Council of WA for consideration.
- 3. Future development in the LDP1 area adjacent to the heritage-protected places *Frenchman Bay Whaling Station (ruin)* (P16612) and *Kep-Mardjit / Vancouver Spring* & *Dam* (P15602) should consider any relevant policies and recommendations outlined in the *Archaeological Management Plan for Frenchman Bay Whaling Station (ruin)* (Archae-aus, 2022).

Land use

4. The Local Development Plan shall be updated to replace reference to 'Bar/Kitchen/Shop' with 'Restaurant/Shop'.

<u>Advice:</u> The LDP should not reference land uses that are unable to be considered under the City of Albany Local Planning Scheme No.1

- 5. No building is permitted to be used/occupied as a caretaker's dwelling until such time as a tourist development on the same lot has commenced operations.
- 6. More than one caretaker's dwelling as part of facilities for the management of a tourist development in the LDP1 area may be considered, subject to the following:
 - Where separate owned and managed tourist developments operating within the LDP1 area demonstrate that on-site caretaker's dwelling is required to support management of the facilities, and cannot otherwise be addressed through alternative arrangements;
 - A caretaker's dwelling shall be on the same lot as the tourist development it is directly associated with;
 - If further subdivision or amalgamation of the lots within the LDP1 area occurs, a caretaker's dwelling shall remain to be contained on the same lot as the tourist development it is directly associated with;
 - Should any of the tourist developments operating within the LDP1 area amalgamate with another tourist development within the LDP1 area or cease operations, any approved caretaker's dwelling directly associated with the tourist development shall also cease and be required to be removed, or converted to form part of the tourist development.

Car parking

7. Car parking shall be provided in accordance with Local Planning Scheme requirements and AS 2890.

<u>Water</u>

8. All development shall be connected to a reticulated water supply, unless evidence of a viable alternative source can be provided with a development application and subsequently agreed to in writing by the City of Albany, following consultation with appropriate authorities.

Environmental

- 9. A Fauna Management Plan is to be prepared and implemented, consistent with the requirements of the Department of Biodiversity Conservation and Attractions, to manage threatened species during each stage of development works.
- 10. Prior to the commencement of any tourist development, surface and groundwater monitoring shall be undertaken in accordance with the approved Surface Water and Ground Water Monitoring Plan.
- 11. Development water cycle management shall be in accordance with the approved Local Water Management Strategy.
- 12. All necessary approvals shall be obtained prior to any clearing of vegetation outside of lot boundaries.

<u>Advice:</u>

- The applicant should contact the City of Albany Reserves to commence arranging obtaining relevant approvals.
- State and Federal clearing approval may also be required.
- 13. Prior to submitting any development application for the tourist development, in-situ soil infiltration testing shall be undertaken to the satisfaction of the Department of Water and Environmental Regulation. If required, the Site and Soil Evaluation Report shall be updated to reflect amended land application areas and shall be submitted to the City of Albany for approval.

<u>Advice:</u>

- Further referrals to State Agencies may be required.
- 14. All on-site wastewater systems are to comply with relevant Health Regulations, Government Sewerage Policy 2019, and Health (Miscellaneous Provisions) Act 1911 Health (Treatment of Sewage and Disposal of Effluent and Liquid Waste) Regulations 1974. Land application areas must be located a minimum of 100m from the Vancouver Spring Catchment Area.

Amenity

- 15. All dwellings, outbuildings and other structures (such as water tanks) shall be designed and constructed of material which allows them to blend into the landscape of the site. The use of natural materials such as stone and timber will be encouraged.
- 16. In order to protect visual amenity and reduce glare from a building (including water tanks) the use of reflective materials and white/off-white colours shall not be permitted.

Built form

17. Building heights within the 'single storey development setback' shall generally be consistent with the maximum heights (from natural ground level) established within

 Table 3: Maximum Building Heights – Category A of SPP3.7 – Residential Design

 Codes Volume 1.

<u>Advice:</u> This provision provides guidance on the application of the Local Planning Scheme height requirements.

 Building heights outside the 'single storey development setback' shall generally be consistent with the maximum heights (from natural ground level) established within Table 3: Maximum Building Heights – Category B of SPP3.7 – Residential Design Codes Volume 1.

<u>Advice:</u> This provision provides guidance on the application of the Local Planning Scheme height requirements.

Bushfire

19. Prior to the lodgement of any development application for the site, a written declaration shall be submitted to the City of Albany by a Level 3 bushfire consultant, confirming that a suitable area for on-site shelter, with radiant heat flux not exceeding 10kW/m² can be provided on-site to support all proposed future development (lodge, chalets, restaurant, day spa and associated caretaker's dwellings).

<u>Advice:</u>

- The ability to achieve a suitable area for on-site shelter, with a radiant heat flux not exceeding 10kW/m2 should not be dependent on clearance/vegetation maintenance outside of lot boundaries, unless the necessary approvals have been obtained.
- The purpose of this condition is to confirm the development can safely proceed (capacity restrictions may still apply) without a suitable destination being identified, given concerns as to whether a suitable destination could be arranged.
- This condition does not preclude a suitable destination being explored or proposed within an amended Bushfire Management Plan.
- 20. Prior to lodgement of a development application for any tourism development, an updated Bushfire Management Plan and Bushfire Emergency Evacuation Plan, demonstrating compliance with *State Planning Policy 3.7- Planning in Bushfire Prone Areas*, shall be submitted for endorsement by the City of Albany, in consultation with relevant state government agencies, with the requirements implemented thereafter.

<u>Advice:</u>

- The current Bushfire Management Plan dated #### does not demonstrate compliance with the requirements of SPP3.7 and has therefore not been endorsed by the City of Albany.
- Given the unlikelihood in a compliant 'suitable destination' becoming available within a reasonable timeframe, and the proponent's expectation to accommodate more than 100 guests on-site, it is recommended that preparation of an updated BMP is commenced as soon as possible, to mitigate potential delays in consideration of a future development application for any tourist development.

- Clearing of vegetation outside of lot boundaries shall not be relied upon unless the appropriate approvals have been obtained.
- 21. Total site capacity (guests, staff and caretakers) shall be limited to a maximum of 100 persons unless a greater capacity is supported under *State Planning Policy 3.7 Planning in Bushfire Prone Areas* and associated Guidelines, and subsequently agreed to in writing by the City of Albany, and following consultation with relevant state government agencies.
- 22. On-site shelter shall be provided in accordance with an approved Bushfire Management Plan and shall be designed and constructed in accordance with the National Construction Code and the ABCB Community Shelter handbook, unless an alternative is supported under the *State Planning Policy 3.7 Planning in Bushfire Prone Areas* and associated Guidelines, subject to agreement in writing by the City of Albany and following consultation with relevant state government agencies.
- 23. Indicative tent area is permitted subject to compliance with *State Planning Policy 3.7 Planning in Bushfire Prone Areas*.
- 24. Strategic on-site water shall be provided in accordance with the *State Planning Policy 3.7 Planning in Bushfire Prone Areas* and associated Guidelines.
- 25. Prior to lodgement of a development application for any tourism development, a notification pursuant to Section 70A of the Transfer of Land Act 1893 is to be placed on the Certificate of Title of the proposed development lots advising of the existence of a hazard. The notification is to state as follows:

"This land is within a bushfire prone area as designated by an Order made by the Fire and Emergency Services Commissioner and is subject to a Bushfire Management Plan. Additional planning and building requirements may apply to development on this land."

Coastal

- 26. The landowner is to undertake monitoring and review the coastal hazards every five years as identified in the Frenchman Bay Coastal Hazard Risk Management and Adaptation Plan. The landowner is to provide reporting to the Local Government on this matter to the satisfaction of the Local Government.
- 27. Development approval will be time limited (temporary planning approval) and shall cease to have effect when any of the following situations occur:
 - a. Shoreline retreat reaches 33m from any asset
 - b. The most landward part of the Horizontal Shoreline Datum is within 15 metres of the most seaward part of the lot boundary
 - c. Public road is no longer available or able to provide legal access to the property; or
 - d. Water, sewerage or electricity to the lot is no longer available as they have been removed/decommissioned by the relevant authority due to coastal hazards.

- 28. Once the development approval expires in accordance with the above, the development shall be removed and:
 - a. The land shall be rehabilitated to its pre-development condition, to the specifications and satisfaction of the Local Government, at the landowners cost; and
 - b. The affected area (processes area and foreshore) shall be ceded to the Crown, free of cost and without any payment of compensation by the Crown; and
 - c. Should managed retreat be proposed, the landowner will need to apply to relocate the development to a safe position on the lot.

<u>Advice:</u> Horizontal Shoreline Datum means the active limit of the shoreline under storm activity, as defined in State Planning Policy 2.6 – State Coastal Planning Policy (2013).

- 29. Prior to lodgement of a development application for any tourism development, suitable arrangements shall be made with the City of Albany for pedestrian access from the subject site to the foreshore/beach. *Advice:*
 - Appropriate pedestrian access may be informed by results of the Foreshore Management Plan to be prepared by the City of Albany.
 - The existing vehicular access to the foreshore/beach is not safe for pedestrian access.
 - Future access shall ensure the beach/foreshore is accessible to people with a disability.
- 30. Prior to lodgement of a development application for any tourism development, a notification, pursuant to Section 70A of the Transfer of Land Act 1893 is to be placed on the Certificate of Title of the proposed development lot advising of the existence of a hazard. The notification is to state as follows:

'VULNERABLE COASTAL AREA - This lot is located in an area likely to be subject to coastal erosion and/or inundation over the next 100 years from the date this notification is registered and is subject to conditions which require removal and rehabilitation of development to pre-development conditions at the landowners cost, and ceding of the land to the Crown, free of cost and without any payment of compensation by the Crown at the time the situations specified in the Local Development Plan occur.

- 31. Prior to lodgement of a development application for any tourism development, the amalgamation of lots 1 & 2 should be progressed or suitable easements shall be arranged to address the following matters:
 - Reciprocal rights of access for Lot 1 over the Lot 2 (lodge) entry
 - Access rights for emergency fire purposes in favour of the Local Government and public authority
 - Access rights for strategic water supply for firefighting purposes
 - Access rights to on-site shelter (if relevant); and
 - Rights to use land outside of lot boundaries for effluent disposal application areas and associated maintenance.

General Advice:

- *i.* In regard to the timing indicated on the above provisions, the 'tourist development' means any part of the development indicated on the LDP diagram, with the exception of the maintenance shed.
- *ii.* Resolution of outstanding matters relating to bushfire management, effluent disposal, clearing outside of lot boundaries and LDP provisions may necessitate changes to the approved LDP prior to the tourist development commencing. The applicant should be advised that any required amendments to the LDP may necessitate a full assessment, advertising and referral process in accordance with statutory requirements, depending on the significance of the amendments.
- iii. The City of Albany has no obligation to protect against coastal hazards and/or inundation, and is not liable for any harm caused by coastal hazards and/or inundation
- *iv.* A Section 40 approval from the Department of Biodiversity, Conservation and attractions will be required prior to any clearance likely to disturb habitat or potential habitat for threatened species.
- v. The DPLH recommends that proponents refer to the State's Aboriginal Heritage Due Diligence Guidelines (Guidelines). The Guidelines can be found on the DPLH website at the following link: https://www.dplh.wa.gov.au/informationand- services/aboriginal-heritage/land-use- under- the-aha
- vi. The development area is within a proclaimed groundwater area under the Rights in Water and Irrigation Act, 1914. A licence to construct a well and take water is required in most instances (DWER).

ATTACHMENT C

BIODIVERSE SOLUTIONS (2022) SITE SOIL EVALUATION

Lot 1 and 2 Frenchman Bay Road, Frenchman Bay WA

Site Soil Evaluation

Bio Diverse Solutions 07/11/2022

DOCUMENT CONTROL

TITLE: Site Soil Evaluation – Lot 1 & 2 Frenchman Bay Road, Frenchman Bay

Author (s): Chiquita Cramer (Bio Diverse Solutions)

Reviewer (s): Bianca Theyer & Nick Ayton

Job No.: MSC0403

Client: Frenchman Bay Albany Pty Ltd

REVISION RECORD

Revision Summary		Revised By	Date
Draft Id 13/07/2021	Internal QA review	B. Theyer	13/07/2021
Draft Id 13/07/2021 Submitted to Ayton Baesjou for review		N. Ayton	13/07/2021
Final Id 03/0802021	Submitted to Ayton Baesjou for client submission	C. Cramer	03/08/2021
Final 22/03/2022	Updated to include modified LDP	C. Cramer	22/03/2022
Final 05/04/2022	Updated to include further modified LDP	C. Cramer	12/04/2022
Final 30/08/2022	Updated to include response to DoH comments and LDP update.	C. Cramer	30/08/2022
Final 7/11/2022	Updated to include response to DWER comments and LDP update.	C. Cramer	7/11/2022

Bio Diverse Solutions Australia Pty Ltd

Albany Office 29 Hercules Crescent Albany WA 6330 08 9842 1575 Denmark Office Unit 7, 40 South Coast Highway Denmark WA 6333 08 9848 1309 Esperance Office Unit 2A, 113 Dempster Street Esperance WA 6450 08 9072 1382

www.biodiversesolutions.com.au

ABN 46 643 954 929

(C) Copyright: This document has been prepared by Bio Diverse Solutions for use by the client only, in accordance with the terms of engagement, and only for the purpose for which it was prepared.

Table of Contents

1	INTRODUCTION	4
1.1 1.2	ALIGNMENT TO LEGISLATION, POLICY AND GUIDELINES	4 4
2	DEVELOPMENT PROPOSAL	6
3	DESKTOP ASSESSMENT	8
3.1 3.2 3.3 3.4 3.5 3.1 3.2	TOPOGRAPHY AND SLOPE	8 9 10 10 12 . 12
4	SOIL TESTING	. 13
4.1 4.2 4.3 4.4	SOIL TESTING METHOD SOIL TESTING RESULTS SOIL PERMEABILITY PHOSPHORUS RETENTION INDEX	13 14 15 16
5	SITE SUITABILITY	. 17
6	LAND APPLICATION AREAS	. 20
7	REFERENCES	23

List of Tables

Table 1: Soil Testing Results (GSG, 2016)

Table 2: Soil Testing Results (GSG, 2018)

Table 3: Permeability Results

Table 4: Minimum requirements for all on-site wastewater disposal systems and design specific standards

Table 5: Estimated Land Application Areas for proposed development

List of Figures

- Figure 1: Location Plan
- Figure 2: Proposed Local Development Plan
- Figure 3: Topography and Geology
- Figure 4: Surface water and groundwater hydrology
- Figure 5: Sewage Sensitive Area Mapping
- Figure 6: Soil testing hole locations
- Figure 7: 2018 Soil testing hole locations
- Figure 7: Hydraulic Conductivity of Soil Types (Artiola et al, 2004)
- Figure 9: Indicative land application areas
- Figure 10: Monitoring locations

Appendices

- Appendix A Site Soil Investigation (Great Southern Geotechnics, 2016)
- Appendix B Site Soil Investigation (Great Southern Geotechnics, 2018)
- Appendix C In-situ Permeability Results (BDS, 2022)

1 Introduction

Frenchman Bay Albany Pty Ltd commissioned Bio Diverse Solutions to prepare a Site Soil Evaluation (SSE) to determine onsite effluent disposal suitability for a proposed tourism development at Lot 1 and 2 Frenchman Bay Rd, Frenchman Bay WA (herein referred to as the Subject Site). This report details the site soils and suitability for on-site effluent disposal at the site in relation to the proposed development.

1.1 Alignment to Legislation, Policy and Guidelines

Bio Diverse Solutions has prepared this report aligned to the following legislation:

- State Planning Commission, Land Capability Assessment for Local Rural Strategies (1989);
- Government Sewerage Policy (2019);
- Draft Country Sewerage Policy (Amended 2003);
- Health Act (1911) and draft Health Act (2008);
- Country Area Water Supply Act 1947;
- Code of Practise for the design, manufacture and operation of Aerobic Treatment Units (2001); and
- Australian Standard (AS)1547-2012.

1.2 Suitable Qualified Hydrologist

This SSE has been prepared by Chiquita Cramer, who has 13 years of experience working as a hydrologist and hydrogeologist.

Chiquita Cramer has the following tertiary qualifications:

- Bachelor of Science in Natural Resource Management (University of Western Australia); and
- Graduate Certificate in Hydrogeology (University of Western Australia).

Chiquita worked as a hydrologist and senior hydrologist at JDA Consultant Hydrologists in Perth for 8 years, during this time she also completed a Graduate Certificate in Hydrogeology. In 2017 she joined Bio Diverse Solutions (BDS) to provide expertise in hydrology and hydrogeology to the company. Chiquita's experience includes preparation of local and urban water management strategies, hydrological and hydraulic investigations, surface water and groundwater monitoring reports, hydrogeological reports and Site Soil Evaluations (SSE) for onsite disposal suitability. Chiquita has successfully completed numerous SSE reports for a range of developments at various planning stages. Chiquita also attended a workshop on SSE reporting organised by the Department of Health in 2021.

1.3 Location

The Subject Site is defined as Lot 1 and 2 Frenchman Bay Road, Frenchman Bay WA, within the municipality of the City of Albany (CoA). It is located approximately 21km southeast of the Albany CBD. The site is bound by Frenchman Bay Road to the east, Frenchman Bay beach to the north and CoA reserve to the south and west. The location of the Subject Site is shown on Figure 1.

Figure 1: Location Plan

2 **Development Proposal**

In September 2015, the CoA approved a Local Development Plan (LDP) for Lots 1 and 2 Frenchman Bay Road, which are designated as Special Use Site No. 13 under the provisions of the City of Albany's Local Planning Scheme No. 1. The Special Use site provides for the development of holiday accommodation, caravan park, caretaker's dwelling and a shop, and is identified as an important local strategic tourist site in the City of Albany's Local Tourism Planning Strategy. Following approval of the LDP, a development application was lodged with the Southern Joint Development Assessment Panel in December 2017 and approved in June 2018. The developer subsequently resolved not to proceed with the development and the property has more recently been acquired by Frenchman Bay Albany Pty Ltd.

Frenchman Bay Albany Pty Ltd propose an alternative development to what was previously proposed. They propose separating the site into three components consisting of:

- A luxury holiday lodge with 10-12 bedrooms;
- Up to 25 single bedroom holiday chalets, day spa and manager's accommodation; and
- A signature café/restaurant with associated kiosk/shop and reception office.

The proposed LDP is shown in Figure 2.

Figure 2: Proposed Local Development Plan

3 Desktop Assessment

3.1 Topography and slope

The Subject Site is situated at the top of a steep slope extending from the coast line below. Topography across the sight is gently sloping, ranging in height from 14m AHD in the northeast corner of the site to 28m AHD in the southwest corner of the site. Topographic Contours are shown in Figure 3.

3.2 Geology and Soils

Soil Mapping – Zones (DPIRD, 2022) shows the Subject Site is within the Albany Sandplain Zone (242) and described as 'Gently undulating plain dissected by a number of short rivers flowing south. Eocene marine sediments overlying Proterozoic granitic and metamorphic rocks. Soils are sandy duplex soils, often alkaline and sodic, with some sands and gravels.' (DPIRD, 2022).

The Subject Site is located within one soil system being the Mount Many Peaks System (242Mm) and described as 'Granitic hills and headlands, on the southern edge of the Albany Sandplain Zone, with shallow gravel, bare rock grey shallow sandy duplex and sandy gravel. Low woodland, scrub heath and mosses and lichens on rocks.' (DPIRD, 2022). The Subject Site is also located within one soil sub-system being the Gardner sandy phase and described as 'Granitic hills and headlands, on the southern edge of the Albany Sandplain Zone, with shallow gravel, bare rock grey shallow sandy duplex and sandy gravel. Low woodland, scrub heath and mosses and lichens on rocks.' (DPIRD, 2022).

In 2008 Landform Research conducted a geological study of the site for a previous proposed development. In summary six air blast drill holes were constructed to varying depths from 15 - 21 m BGL (Below Ground Level), the drill holes were tested for soil type and presence of groundwater. Soil type in all six drill holes was found to be predominantly Quaternary coastal, Aeolian sands (from 0m BGL to between 6.5 and >16 m BGL). Holes 1, 2, 3 and 5 consisted of Quaternary coastal, Aeolian sands overlying possible Pallinup Siltstone, with the depth of the siltstone layer ranging from 6.5 - 16.5 m BGL in Hole 3 to 16 - >21 m BGL in Hole 1. Peats consistent with the Werillup Formation were found at Hole 3 only, from 16.5 m BGL. The location of the drill holes is shown in Figure 3.

Figure 3: Topography and Geology

3.3 Surface Hydrology

There are no existing drainage networks or water bodies within the Subject Site. Surface water generally runs off the site in a north easterly direction towards the coast line. There are however many localised low points across the site which would trap most of the surface runoff from the site during storm event. The north-eastern portion of the site has a steeper slope with fewer localised low points and as such surface water here would drain directly off the site, via sheet flow, down the embankment towards the foreshore.

There are two natural springs (Vancouver Spring and Small Spring) located approximately 65m and 40m respectively, from the north-west corner of the Subject Site. Only a very small portion of the Subject Site in the northwest drains towards the springs.

Surface water from the section of Frenchman Bay Road adjacent to the Subject Site, including the adjoining beach car park and turn around area, is directed towards the foreshore via the road network. There are two kerb breaks in the steeper section of road directing stormwater off the road and down the embankment towards the beach. The surface water hydrology of the Subject Site is shown in Figure 4.

3.4 Hydrogeology and Groundwater

Australian Geoscience Mapping and Department of Water and Environmental Regulation (DWER) 250K Hydrogeological mapping places the Subject Site within the *Tertiary - Cainozoic - Phanerozoic period (TPw)*. The soils are described as *'Werillup Formation – bryozoans limestone, siltstone, sandstone, peat and basal conglomerate; weathered.'* The aquifer is described as *'a sedimentary aquifer with intergranular porosity – extensive aquifers, major groundwater resources'* (DWER, 2001). Hydrogeological mapping is shown on Figure 4.

DWER 250K Hydrogeological mapping is consistent with findings by Landform Research (2008) which showed peats consistent with the Werillup Formation and encountered groundwater at Drill Hole 2 (9.8m AHD), Drill Hole 3 (11.3m AHD), Drill Hole 4 (-0.7m AHD) and Drill Hole 6 (5.8m AHD). Groundwater was not encountered to 2m depth during the September 2016 or the March 2018 geotechnical investigation (Great Southern Geotechnics). The drill holes and their respective depths to groundwater are shown on Figure 4.

There is one existing production bore located on the Subject Site. The production bore was previously used for water supply to the caravan park via a 200kL tank located at the high point of the site. Subsequent to the caravan park's closing the bore was used by the City of Albany (CoA) to supply water to an adjacent public toilet facility. More recently the CoA constructed a new production bore and associated tank ~12m south of the Subject Site to service the public toilets and as such the Subject Site bore is currently unutilised. The location of the Subject Site production bore and the 200kL tank are shown in Figure 4.

Desktop analysis of the Subject Site indicates it is not located within a designated Public Drinking Water Source Area (PDWSA) as defined by the *Country Areas Water Supply Act 1947*. The closest designated PDWSA is located 1.4km to the southwest, being Limeburners Creek Catchment (Priority 1) (DWER, 2022).

3.5 Flooding Potential

The Subject Site is not subjected to regular flooding given the elevation of the Subject Site and separation to groundwater.

3.1 Environmentally Sensitive Areas

The Subject Site is located 212m away from the nearest Environmentally Sensitive Area (ESA) being; Torndirrup National Park. This meets the usual requirement of 100m separation for developments from ESA's. Additionally the proposed development poses minimal risk to the ESA given the Subject Site is located downgradient of the ESA.

3.2 Sewage Sensitive Areas

The Subject Site is not located in a Sewage Sensitive Area. The *Government Sewerage Policy* (DPLH, 2019a) outlines Sewage Sensitive Areas as:

'Land that drains to and is within two kilometres of Irwin Inlet, Wilson Inlet, Torbay Inlet, Manarup Lagoon, Lake Powell, Princess Royal Harbour and Oyster Harbour'.

and

'Within one kilometre up-groundwater- gradient and 250 metres down-groundwater-gradient of a significant wetland; or where the groundwater gradient is unknown or seasonably variable within one kilometre of the significant wetland'.

The Subject Site is outside of Princess Royal Harbour and not within close proximity of a wetland classified as significant and therefore is not within a Sewage Sensitive Area. Sewage Sensitive Area mapping is shown in Figure 5.

Figure 5: Sewage Sensitive Area Mapping

4 Soil Testing

4.1 Soil Testing Method

A Site Soil Investigation was conducted on the 30th September 2016 by Great Southern Geotechnics (GSG) and Bio Diverse Solutions as part of the previously proposed and approved development. The site investigation included the construction of six test holes to a depth of 2.0 metres, photographing and logging of soils to the depth of the holes, and inspection and measuring of the water table if found to be present. The location of the six soil test holes is shown in Figure 6 and the Site Soil Investigation (GSG, 2016) report showing the bore hole logs is included as Appendix A.

Figure 6: Soil testing hole locations

A follow up Site Soil Investigation to capture soil characteristics along the eastern and southern boundaries was conducted on the 22nd March 2018. The site investigation included the construction of a further six test holes to a depth of 2.0metres, photographing and logging of soils to the depth of the holes and inspection and measuring of the water table. The location of the additional six soil test holes is shown in Figure 7 and the Site Soil Investigation (GSG, 2018) report is included as Appendix B.

Figure 7: 2018 Soil testing hole locations

Soil test holes during both the 2016 and 2018 investigation were excavated to a depth of 2.0 metres using a Kubota KX41-3V mini excavator with a 300mm auger. The boreholes were logged and left open for a minimum of 1 hour to examine any water table or water seepage into the soil profile.

Analysis of the site for suitability of effluent disposal was undertaken with a desktop assessment of publicly available databases and assessment of the site soils in relation to the Government Sewerage Policy (DPLH, 2019a) and AS1547-2012.

4.2 Soil Testing Results

The 12 test holes revealed that soils across the site were relatively consistent and consisted predominantly of sand with silt from the surface to the depth of the hole.

Details of the 2016 site soils as classified by Great Southern Geotechnics are provided in Table 1 and the details of the 2018 site soils is provided in Table 2. The 2016 and 2018 Site Soil Investigation Reports (including bore logs) are shown in Appendix A and B, respectively.

Test Pit	Depth (mm)	Soil Type	Soil Description	
TP1	0-500mm	Sand with silt	Dark grey to grey, fine to medium grained, roots and root fibres.	
	500-1800mm	Sand with silt	Light grey/white, fine to medium grained.	
			No water table was encountered.	
TP2	0-300mm	Sandy gravel	Brown, fine to medium gravel, sub-rounded to sub angular, fine to medium grained sand, roots and root fibres.	
	300-800mm	Sand with silt	Dark grey to grey, fine to medium grained, roots and root fibres.	
	800-1800mm	Sand with silt	Grey to light grey/white, fine to medium grained.	
			No water table was encountered.	
TP3	0-300mm	Sand with gravel	Brown/grey, fine to medium grained sand, fine to medium grained gravel, subrounded to sub-angular, roots and root fibres.	
	300-1800mm	Sand with silt	Light grey/white, fine to medium grained, roots and root fibres.	
			No water table was encountered.	
TP4	0-600mm	Sand with silt	Dark grey to grey, fine to medium grained, roots and root fibres.	
	600-1800mm	Sand with silt	Dark grey to grey, fine to medium grained.	
	1800-1900mm	Sand with silt	Light grey/light brown, fine to medium grained with pockets of dark brown fine to medium grained, cemented SAND.	
			No water table was encountered.	
TP5	0-200mm	Sandy gravel	Grey/brown, fine to medium gravel, sub-rounded to sub- rounded, fine to medium grained sand, roots and root fibres.	
	200-1200mm	Sand with silt	Light grey/white, fine to medium grained.	
	1200-1800mm	Sand with silt	Light brown/yellow, fine to medium grained, mottled dark brown fine to medium grained, cemented SAND with silt.	
			No water table was encountered.	
TP6	0-1200mm	Sand with silt	light grey, fine to medium grained, roots and root fibres.	
	1200-1800mm	Sand with silt	Light brown/yellow, fine to medium grained, mottled dark brown fine to medium grained, cemented SAND with silt.	
			No water table was encountered.	

Table 1: Soil Testing Results (GSG, 2016)

Test Pit	Depth (mm)	Soil Type	Soil Description	
TD1 (2)	0-400mm	Sand with silt	Dark grey, fine to medium grained. Roots and root fibres.	
	400-800mm	Sand with silt	Grey, fine to medium grained.	
1 - 1 (2)	800-2000mm	Sand with silt	Light grey to white, fine to medium grained.	
			No water table was encountered.	
	0-1600mm	Sand with silt	Light grey/white, fine to medium grained.	
TP2 (2)	1600-2000mm	Sand with silt	Light brown/grey, fine to medium grained.	
			No water table was encountered.	
	0-400mm	Sand with silt	Grey, fine to medium grained, roots and root fibres.	
	400-1000mm	Sand with silt	Light grey, fine to medium grained.	
183 (2)	1000-2000mm	Sand with silt	White fine to medium grained.	
			No water table was encountered.	
	0-500mm	Sand with silt	Grey, fine to medium grained, roots and root fibres.	
TD4 (2)	500-1000mm	Sand with silt	Light grey, fine to medium grained.	
164 (2)	1000-2000mm	Sand with silt	Light grey/white, fine to medium grained.	
			No water table was encountered.	
	0-300mm	Sand with silt	Grey, fine to medium grained with roots and root fibres.	
TD5 (2)	300-800mm	Sand with silt	Light grey/white, fine to medium grained.	
1F5 (2)	800-2000mm	Sand with silt	Light grey/white, fine to medium grained.	
			No water table was encountered.	
	0-300mm	Sand with silt	Grey, fine to medium grained, with roots and root fibres.	
	300-1700mm	Sand with silt	Light grey, fine to medium grained.	
1 PO (2)	1700-2000mm	Sand with silt	Brown/grey, fine to medium grained.	
			No water table was encountered.	

Table 2: Soil Testing Results (GSG, 2018)

4.3 Soil Permeability

Silts and clay soils generally record poor permeability results whereas coarse sands and loose gravels generally record high permeability, as shown in Figure 7.

Figure 8: Hydraulic Conductivity of Soil Types (Artiola et al, 2004)

In-field permeability testing was conducted on the 25th October 2022 at 2 locations within the proposed land application areas (Figure 9). Permeability testing was conducted using the Talsma-Hallam method. Hydraulic conductivity at IT1 (Figure 9) was found to be 4.03m/day (4.7×10^{-5} m/sec) and hydraulic conductivity at IT2 was found to be 1.21m/day (1.4×10^{-5} m/s), the hydraulic conductivity raw data and calculations is shown in Appendix C. Both hydraulic conductivities are considered to be rapid as shown in Figure 7. The hydraulic conductivity found at IT1 was found to be consistent with that of Soil Category 1 - Sand/gravel and the hydraulic conductivity at IT2 was found to be consistent with that of Soil Category 3 – Loams as per Table L1 of AS/NZS 1547:2012. The lower hydraulic conductivity encountered at IT2 was likely due to the compaction of the soil at this location due to vehicle movement given its close proximity to the site entrance. The soil at this location was also impacted by the presence of the surrounding established Norfolk pines, with soil mounding evident here due to the pine tree's root system. The soil hydraulic conductivity at IT1 within natural bushland was more indicative of that likely encountered across the majority of the site.

4.4 Phosphorus Retention Index

Phosphorous Retention Index (PRI) is the ability of soils to absorb and treat nutrients within the soil (i.e. soil microbe disinfecting ability). Soils with a PRI less than 1 have a very poor ability to treat effluent waters, whilst soils with a PRI of >5 having a high ability to treat effluent waters (nutrients).

PRI testing was conducted by CSBP on the sand with silt layer from TP1 (0-500mm depth) and TP6 (0-1200mm depth) during the 2016 soil investigation. The test results indicate that the site soils have a very low ability of treating effluent waters and to fix nutrients within the soil. TP1 had a PRI of 0.1 and TP6 had a PRI of 0.7.

5 Site Suitability

The Subject Site is situated in an area that does not have access to deep or reticulated sewerage. The health and environmental requirements for wastewater treatment and disposal for developments not serviced by deep sewerage systems are contained in the *Government Sewerage Policy*, (DPLH, 2019a). The *Government Sewerage Policy* (DPLH, 2019a) states minimum requirements apply for all on-site sewage disposal systems.

Soil testing conducted by Landform Research (2008) and Great Southern Geotechnics (2016 and 2018) showed soils across the Subject Site were consistent and comprised predominantly of sand with silt with a moderate permeability. This soil type is suitable for onsite effluent disposal allowing for adequate infiltration to prevent backing up of the system and water logging. The PRI of the soil was found to be low (0.1 to 0.7) it is recommended a soil amendment be incorporated into the land application areas to increase PRI to a minimum of 5. The soil amendment will also assist with the capacity of the soil to hold effluent water, promoting evapotranspiration and preventing the leaching of nutrients and contaminants from the effluent.

Groundwater was not encountered to a depth of 2 metres during the 2016 and 2018 soil investigation (GSG) and the 2008 investigation by Landform Research showed groundwater to be >6m BGL across the site. There were also no confining or semi-confining layers encountered close to surface (<2m BGL) at the site and therefore any perching of water during wetter months is unlikely. Groundwater is therefore not likely to have any impact on effluent disposal across the site.

The Subject Site has a gentle slope and does not exceed the minimum grade requirements (1:5) for disposal as outlined in Table 3 of the Draft Government Sewerage Policy (2019). It is recommended that the Land Application Areas (LAA) for onsite effluent disposal are adequately setback from the steep slope between the Subject Site and the Frenchman Bay foreshore to the north.

There are no waterways, water bodies or wetlands within the Subject Site. Vancouver and Small Springs are situated 65 and 40m, respectively, to the northwest of the Subject Site. Despite the springs being within 100m from the Subject Site boundary land application for effluent disposal for the proposed development can be and shall be achieved outside of the 100m separation setback from the springs. A 100m setback from the coastline to all LAA shall also apply, adequate LAAs are achievable within the Subject Site >100m from the coastline.

There is one private production bore within the Subject Site, this bore will be decommissioned as part of the development. There is also a City of Albany (CoA) production bore located ~12m south of the Subject Site boundary, at least 30m separation between the proposed LAA and the CoA bore shall be provided. Any future bore installed on the site shall be situated a minimum of 30m from LAAs, this is achievable within the Subject Site.

In summary the Subject Site and proposed development is deemed suitable for on-site effluent disposal given effluent disposal systems are installed consistent with (AS)1547-2012.

Table 4 outlines a summary of policy and compliance of the site to minimum requirements as outlined in the Government Sewerage Policy (DPLH, 2019a).

Site Feature	Minimum Requirement	Requirement met
Separation from	a wellhead protection zone or on Crown land within a reservoir protection zone;	Yes
waterways	 100 metres of the high-water mark of a reservoir or 100 metres of any bore used for public drinking water supply where: — a wellhead protection zone or reservoir protection zone has not been assigned; or — where existing lots would be rendered undevelopable by the wellhead protection zone. 	The Subject Site is not located within the vicinity of a Priority Drinking Water Source Area (PDWSA) and associated wellheads. The nearest PDWSA is 1.4kms away being the South Coast Water Reserve and Limeburners Creek Catchment Area.
	30 metres of a private bore used for household/ drinking water purposes.	Yes
		There is one existing production bore on site, this bore will be decommissioned as part of development works. At least 30m shall be provided between the CoA bore and the site's proposed LAAs. Any proposed production bores shall be located a minimum of 30m from the designated LAAs.
	100 metres of a waterway or significant wetland and not within a waterway foreshore area or wetland buffer. The separation distance should be measured outwards from the outer edge of riparian or wetland vegetation.	Yes The nearest waterway is Vancouver and Small Spring located approximately 65 and 40 metres from the Subject Site. The LAAs shall be located a minimum of 100m from the springs. LAAs shall also be located 100m from the coastline.
	100 metres of a drainage system that discharges directly into a waterway or significant wetland	Yes
	without treatment.	There are no additional drainage systems, to those mentioned above, within 100m of the proposed development.
	Any area subject to inundation and/or flooding in a 10 per cent Annual Exceedance Probability	Yes
	(AEP) rainfall event.	The Subject Site is elevated in the landscape and not subjected to flooding in a 10% AEP.
Separation from groundwater – outside of public	Where land is not within a public drinking water source area or a sewage sensitive area, the discharge point of the on-site sewage system should be located the following distances above the highest groundwater level:	Yes Site soil survey conducted by Landform Research in 2008 showed the highest known groundwater level is 6.8m
drinking water	 for loams and heavy soils, at least 0.6 metres. 	BGL. There is no evidence of any perching of
source areas.	• for gravels, at least one metre.	groundwater at the Subject Site.
	 for sands, at least 1.5 metres. Where a nutrient retentive secondary treatment system is used, at least 0.6 metres. 	

Table 3: Minimum requirements for all on-site wastewater disposal systems and design specific standards

Site Feature **Requirement met Minimum Requirement** A land application area should be provided for all development in accordance with tables 2 and Yes Land Application 3 of this schedule for the disposal of sewage. Area The proposed LAAs are shown in Figure 9 and have been calculated in accordance with the Government Sewerage Policy & AS/NZS 1547:2012. The LAAs are indicative only and should be confirmed upon final design of the development. Yes The land application area includes the area restricted to the distribution of treated sewage only and should be kept free of any temporary or permanent structures. The future proposed LAAs shall be kept free of any temporary or permanent structures. The LAAs shall be placed in an area so that requirements are met. Site plans to be forwarded to the CoA and Department of Health (DoH) prior to approval. Activities within the land application area shall not interfere with the function of the current and Yes future land application system and people should avoid potential contact with effluent residues. The proposed LAAs are a sufficient distance to areas that Unless allowed for in the design, the land application area) should: are utilized for activity or pedestrian traffic. not be built on or paved in a manner which precludes reasonable access: ٠ not be subject to vehicular traffic (other than a pedestrian-controlled lawnmower); The LAAs shall be placed in an area so that requirements not be subject to regular foot traffic such as pathways and clothes line areas; and are met. Site plan to be forwarded to CoA/DoH prior to should be kept in a manner which enables servicing and maintenance of the disposal approval. system. Gradient of the Where slope exceeds one in five (1:5), the land application area should be engineered to Yes land application prevent run-off from the land application area. Surface contours should be provided on the site The proposed LAAs are situated on relatively flat land that area plan. does not exceed 1:5 gradient. Natural and finished gradients of LAAs shall not exceed 1:5 gradient. Site plan to be forwarded to CoA/DoH prior to approval. Location of land Local government may approve the location of land application areas outside building envelopes Noted application area where proposed location meets requirements outlined above. within building envelope

Table 4 continued.

6 Land Application Areas

Land application areas have been calculated for each accommodation type within the proposed development. Estimated land application areas for the proposed development are presented in Table 5 and shown in Figure 9.

Accommodation Type	Expected Maximum occupancy (No. of people at any given time)	Human waste hydraulic loading rates (L/person/day)	Estimated occupancy rate (%)	Conversion factor	Land Application Area (m²)
Luxury holiday lodge consisting of 10-12 bedrooms	24	140	100	0.2	672
25 x single bedroom chalets	50	140	100	0.2	1,400
Signature café/restaurant with associated shop and reception	100	30	100	0.2	600
Day spa	8*	30	100	0.2	48
Manager's accommodation	2	150	100	0.2	60

*Assumed day spa visitors are also accommodation guests.

The location of the land application areas shown in Figure 9 are indicative only, the final location of the land application areas shall be confirmed during detailed design and shall be in accordance with the Government Sewerage Policy (DPLH, 2019a), this Site Soil Evaluation and the effluent disposal system shall be installed in accordance with (AS)1547-2012.

The following assumptions were used to estimate the land application areas for the development:

- The human waste hydraulic loading rates (Table 5) used to calculate land application areas are derived from Regulation 29 and Schedule 9 of the Health (Treatment of Sewage and Disposal of Effluent and Liquid Waste) Regulations 1974.
- The estimated occupancy rate used for the accommodation is 100% this is conservative and takes into consideration the worst-case scenario.
- The conversion factor used to estimate the land application area is derived from the Government Sewerage Policy (DPLH, 2019). This factor is based on the use of a secondary treatment system and the application of effluent water to Soil Category 1 – sand/gravel (as determined in Section 4: Soil Testing).

It is recommended a secondary treatment system be utilised for all effluent disposal due to the large scale of the development and its proximity to the Frenchman Bay foreshore area and Vancouver and Small Springs. A secondary treatment system is a wastewater treatment system which produces treated effluent of secondary standard i.e. 20 mg/L of Biochemical Oxygen Demand (BOD), 30 mg/L of Total suspended solids (TSS) and 10 cfu/100 mL of Escherichia (E) coli. Due to the treatment and disinfection process, the treated wastewater from secondary treatment systems may be used for garden irrigation.

Tertiary treatment systems may also be required to ensure the final effluent meets nutrient reduction targets specified within Water Quality Protection Note # 88 relating to Rural Tourist Accommodation (WQPN 88). The nutrient loading targets specified in the WQPN 88 are a maximum inorganic nitrogen (as N) application of 9mg/L and a maximum reactive phosphorus (as P) application of 0.6mg/L. Nutrient loading targets are consistent with Risk Category A due to the sandy nature of the site soils and the proximity of the site to Vancouver and Small Springs and the coast line.

Both Conventional leach drains and subsurface irrigation systems are both suitable systems for the Subject Site based on soil properties and separation to groundwater. A subsurface irrigation system is recommended at the site given the landscaping proposal (driveways/carparks lined with trees and parkland style gardens). In addition the sub-surface irrigation system relies not only on infiltration but also evapotranspiration allowing for a reduction in leaching and the potential for uptake of nutrients/contaminants by plants.

Irrigation systems shall be designed to ensure that effluent is not applied at rates which exceed the absorption capacity of the soil. Care shall be taken to ensure that the application rate does not lead to:

- Adverse effects on soil properties and plant growth through excess salt accumulation in the root zone during extended dry periods;
- Harmful long-term environmental effects to the soil of the land application system or the adjacent surface water and groundwater; or
- Increased risk to public health from surface ponding in the land application area or channeling or seepage beyond the land application area.

The subsurface irrigation system shall be designed to promote evapotranspiration. Care shall be taken to ensure that the irrigation area is well planted with plant species that are:

- Water tolerant;
- > Appropriate for the site conditions; and
- > Planted at an appropriate density for effective evapotranspiration.

In summary onsite effluent disposal for the proposed development is achievable in accordance with the relevant guidelines with the use of a secondary and if required a tertiary treatment system. A sub-surface irrigation system is the most suitable land application system for the development proposal. Land application area estimates will require revision given any proposed extensions or major changes to the development.

7 Monitoring

Water quality monitoring of Vancouver Springs (SP01) and Small Springs (SP02), and three shallow groundwater monitoring bores (SB01, SB02 and SB03) within the Subject Site (Figure 10) was conducted quarterly for a period of two years from 2018 to 2019. The pre-development monitoring of the groundwater and surface water sites was conducted to establish base line water quality data for the site.

Pre-development and post-development monitoring at Lots 1 and 2 Frenchman Bay Road, Frenchman Bay as part of the proposed Local Development Plan shall be in accordance with Table 5. Water quality results shall be compared to ANZECC & ARMCANZ (2000) water quality trigger values for freshwater (95% level of protection) and ANZECC & ARMCANZ (2000) water quality guidelines for freshwater lakes and reservoirs in South-west Australia. Water quality results shall also be compared to baseline data to evaluate whether any significant changes in water quality or quantity have occurred at the site.

Table 5: Monitoring Program

Development Proposal	Monitoring Proposal	Monitoring Parameters	Approximate Timeframe
Pre-development: Prior to construction of Stage 1 (the lodge) and Stage 2 (the retreat and café).	 Conduct quarterly sampling of three deep bores (DB1, DB2 and DB3) for 1yr to establish baseline data for the local aquifer. The location of the proposed bores is shown in Figure 10 and includes monitoring of the exiting site bore, the existing CoA bore and establishment of an additional bore. Conduct fixed point photography, 2 directions at each proposed location (FP1- FP6, as shown in Figure 10) biannually (April and October) to assess vegetation condition. No pre-development monitoring of the springs (SP01 & SP02) or shallow bores (SB01-SB03) proposed. Baseline data was established in 2018/2019 	 Vegetation condition (fixed point photography) Water levels In-situ: pH, EC, TDS & Dissolved Oxygen Thermotolerant Coliforms & E. coli Nutrient suite Heavy metals 	January 2023 to January 2024
Post-development: Following practical completion of both Stage 1 (the lodge) and Stage 2 (the retreat and cafe).	 Quarterly monitoring of all monitoring sites for a period of 2 years (SP01, SP02, SB1 - SB3, DB1 - DB3, FP1 - FP6). Location of monitoring sites is shown in Figure 10 	 Vegetation condition (fixed point photography) Water levels In-situ: pH, EC, TDS & Dissolved Oxygen Thermotolerant Coliforms & E. coli Nutrient suite Heavy metals 	To be determined
Following 2 years of post-on to occur.	To be determined		

Results and findings from the monitoring program shall be presented in an annual monitoring report and submitted to all relevant government agencies (DWER, DoH and CoA). Water quality monitoring shall be conducted by a NATA accredited laboratory.

Figure 10: Monitoring locations

8 **References**

Australian Standard AS1547:2012 Onsite domestic wastewater management. Sai Global Licence to Bio Diverse Solutions, 2015.

Department of Health (2020) Schedule 9 - Treatment of Sewage and Disposal of Effluent and Liquid Waste) Regulations 1974.

Department of Planning, Lands and Heritage (2019a) *Government Sewerage Policy*, Government of Western Australia.

Department of Planning, Lands and Heritage (2019b) *Sewage Sensitive Area Mapping.* Accessed October 2022.

DPIRD, Department of Primary Industries and Regional Development (2022) Soil Landscape Mapping - Best Available Dataset (DPIRD-027), Soil Landscape Mapping - Systems Dataset (DPIRD-064), Soil Landscape Mapping – Zones Dataset (DPIRD-017). Accessed October 2022.

Department of Water and Environmental Regulation (2001) 1:250 000 *Hydrogeology Map Series*, Government of Western Australia.

Department of Water and Environmental Regulation (2022) *Public Drinking Water Source Areas (PDWSA) Mapping dataset*, Government of Western Australia. Accessed October 2022.

Department of Water and Environmental Regulation (2020) *Water Information Reporting.* Accessed October 2022.

Great Southern Geotechnics (2016) *Geotechnical Report Lot 1 and 2 Frenchman Bay Road Albany.* Unpublished report prepared for a Development Application.

Great Southern Geotechnics (2018) *Geotechnical Report Lot 1 and 2 Frenchman Bay Road Albany.* Unpublished report prepared for a Development Application.

Landform Research (2008) *Geotechnical Investigation Frenchman Bay, Albany.* Unpublished report prepared for a Development Application for the site.

Appendix A

Site Soil Investigation – Great Southern Geotechnics (2016)

VERSION 1 OCTOBER 19, 2016

GEOTECHNICAL INVESTIGATION

LOTS 1 & 2 FRENCHMAN BAY ROAD, ALBANY WA

PRESENTED BY: M.COFFEY

GREAT SOUTHERN GEOTECHNICS 5A 209 CHESTER PASS RD, ALBANY WA ACN: 613 485 644 ABN: 77 613 485 644 Info@gsgeotechnics.com

COLOURS

MOISTURE CONDITION OF SOIL

TERM	DESCRIPTION
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.
Moist	Soil feels cool, darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	Soil feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.

PARTICLE SHAPES

ANGULAR	SUB-ANGULAR	SUB-ROUNDED	ROUNDED
		4	$\bigcirc \bigcirc$

PARTICLE SIZES

BOULDERS	COBBLES	COARSE GRAVEL	MEDIUM GRAVEL	FINE GRAVEL	COARSE SAND	MEDIUM SAND	FINE SAND	SILT	CLAY
>200mm	63- 200mm	20- 63mm	6- 20mm	2.36- 6mm	0.6- 2.36mm	0.2- 0.6mm	0.075- 0.2mm	0.002- 0.075mm	<0.002mm

GRAIN SIZE

SOIL TYPE (ABBREV.)	CLAY (CL)	SILT (SI)	<	SAND (SA)	\longrightarrow	<	_ GRAVEL (GR)	\longrightarrow	COBBLES (CO)
SIZE	< 2 µ m	2-75 µ m	Fine 0.075- 0.2mm	Medium 0.2-0.6mm	Coarse 0.6-2.36mm	Fine 2.36-6mm	Medium 6-20mm	Coarse 20-63mm	63-200mm
SHAPE & TEXTURE	Shiny	Dull	<	angul	ar or subangı	lar or subro	ounded or ro	ounded	\longrightarrow
FIELD GUIDE	Not visible under 10x	Visible under 10x	Visible by eye	Visible at < 1m	Visible at < 3m	Visible at < 5m	Road gravel	Rail ballast	Beaching

CLASSIFICATION CHART

	FIELD IDENTIFICATION PROCEDURES (Excluding particles larger than 60mm and basing fractions on estimated mass)						GROUP SYMBOLS	TYPICAL NAMES
than	ar se than	AN ELS le or nes)	Wide intermedia	range in grain size an ate sizes, not enough f stre	nd substantial amounts o ines to bind coarse grai ength	f all ins, no dry	GW	Well graded gravels, gravel-sand mixtures, little or no fines
s larger	/ELS)% of co larger † 6mm	CLE GRAV (Litt no fi	Predomin sizes m	antly one size or range issing, not enough fine stre	e of sizes with some int es to bind coarse grains ength	ermediate , no dry	GP	Poorly Graded gravels and gravel-sand mixtures, little or no fines, uniform gravels
LLS 63 mm it	GRAV than 50 tion is 2.3	/ELS FINES eciabl int of es)	Dirty' ma	terials with excess of dry st	non-plastic fines, zero trength	to medium	GM	Silty gravels, gravel-sand-silt mixtures
INED SOI ss than 5 mm	More	GRAV WITH (Appre e amou fin	'Dirty' ma	aterials with excess of stre	plastic fines, medium t ength	to high dry	GC	Clayey gravels, gravel-sand-clay mixtures
ARSE GRA erial le 0.07	arse than	SANDS le or lnes)	Wide	range in grain size an ate sizes, not enough fi stre	nd substantial amounts o ines to bind coarse grai ength	f all ins, no dry	SW	Well graded sands, gravelly sands, little or no fines
cO. s of mat	VDS 3% of co smaller 6mm	CLEAN (Litt no f:	Predomin sizes m	inantly one size or range of sizes with some intermediate missing, not enough fines to bind coarse grains, no dry strength '			SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands
than 50%	han 50% shan 50% ion is . 2.3 WITH WITH ES ciabl nt of si		Dirty' ma	materials with excess of non-plastic fines, zero to medium dry strength			SM	Silty sands, sand-silt mixtures
More	More fraci	SANDS FIN (Appre e amou fin	'Dirty' ma	aterials with excess of plastic fines, medium to high dry strength		SC	Clayey sands, sand-clay mixtures	
ч			IDENTIFICAT	ION PROCEDURES ON FRACT	IONS <0.2mm			
alle	20	DRY ST	RENGTH	DILATANCY	TOUGHNESS			
3 mm is smu	mm is sma c CLAYS is sma e so CLAYS than to than to th		o low	Quick to slow	None		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with low plasticity. Silts of low to medium Liquid Limit.
soILS s than 6 m	sırrs AN d limit	Medium t	to high	None to very slow	Medium		CL, CI	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.
GRAINED cial les: than 0.075 m	SRAINED ial less than 0.075 mu iqui	Low to	medium	Slow	Low		OL	Organic silts and organic silt- clays of low to medium plasticity.
FINE FINE of mater and soft of mater function of the second secon	Low to	medium	Slow to none	Low to medium		МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, silts of high Liquid Limit.	
	High to v	ery high	None	High		СН	Inorganic clays of high plasticity.	
More	SIL SI Gre	Medium t	to high	None to very slow	Low to medium	m	ОН	Organic clays of high plasticity
HIGHLY OR	HIGHLY ORGANIC SOILS Readily identified by colour, odour, spongy feel and frequently by fibrous texture Pt				Pt	Peat a	nd other highly organic soils	

PLASTICITY CHART

PLASTICITY

DESCRIPTIVE TERM	OF LOW PLASTICITY	OF MEDIUM PLASTICITY	OF HIGH PLASTICITY
Range Of Liquid Limit (%)	≤ 35	> 35 ≤ 50	> 50

DESCRIPTION OF ORGANIC OR ARTIFICIAL MATERIALS

PREFERRED TERMS	SECONDARY DESCRIPTION
Organic Matter	Fibrous Peat/ Charcoal/ Wood Fragments/ Roots (greater than approximately 2mm diameter)/ Root Fibres (less than approximately 2mm diameter)
Waste Fill	Domestic Refuse/ Oil/ Bitumen/ Brickbats/ Concrete Rubble/ Fibrous Plaster/ Wood Pieces/ Wood Shavings/ Sawdust/ Iron Filings/ Drums/ Steel Bars/ Steel Scrap/ Bottles/ Broken Glass/ Leather

CONSISTENCY - Cohesive soils

TERM	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD
Symbol	VS	S	F	St	VSt	Н
Undrained Shear Strength (kPa)	< 12	12 - 25	25 - 50	50 - 100	100 - 200	> 200
SPT (N) Blowcount	0 - 2	2 - 4	4 - 8	8 - 15	15 - 30	> 30
Field Guide	Exudes between the fingers when squeezed	Can be moulded by light finger pressure	Can be moulded by strong finger pressure	Cannot be moulded by fingers. Can be indented by thumb nail	Can be indented by thumb nail	Can be indented with difficulty with thumb nail

CONSISTENCY - Non-cohesive soils

TERM	VERY LOOSE	LOOSE	MEDIUM DENSE	DENSE	VERY DENSE	COMPACT
Symbol	VL	L	MD	D	VD	со
SPT (N) Blowcount	0 - 4	4 - 10	10 - 30	30 - 50	50 - 100	> 50/150 mm
Density Index (%)	< 15	15 - 35	35 - 65	65 - 85	85 - 95	> 95
Field Guide	Ravels	Shovels easily	Shovelling very difficult	Pick required	Pick difficult	Cannot be picked

MINOR COMPONENTS

TERM	TRACE	WITH
% Minor Component Field Guide	Coarse grained soils: < 5% Fine grained soils: <15% Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary components	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30% Presence easily detectable by feel or eye, soil properties little different to general properties of primary component

GEOLOGICAL ORIGIN

	TYPE	DETAILS
TRANSPORTED SOILS	Aeolian Soils	Deposited by wind
	Alluvial Soils	Deposited by streams and rivers
	Colluvial Soils	Deposited on slopes
	Lacustrine Soils	Deposited by lakes
	Marine Soils	Deposited in ocean, bays, beaches and estuaries
FILL MATERIALS	Soil Fill	Describe soil type, UCS symbol and add 'FILL'
	Rock Fill	Rock type, degree of weathering, and word `FILL'.
	Domestic Fill	Percent soil or rock, whether pretrucible or not.
	Industrial Fill	Percent soil, whether contaminated, particle size & type of waste product, i.e. brick, concrete, metal

STRENGTH OF ROCK MATERIAL

TERM	SYMBOL	IS(50)	(MPA)	FIELD GUIDE TO STRENGTH
Extremely Low	EL	≤0.03		Easily remoulded by hand to a material with soil properties.
Very Low	VL	>0.03	≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxle sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	>0.1	≤0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	>0.3	≤1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	Н	>1	≤3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	>3	≤10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

ROCK MATERIAL WEATHERING CLASSIFICATION

TERM	SYMBOL	DEFINITION
Residual Soil	RS	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded, in water.
Distinctly Weathered Rock	DW	Rock strength usually changed by weathering. Rock may be highly discoloured, usually be ironstaining. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.

6	Client: Bio Diverese Solutions Project: Frenchman Bay Retreat					ort No.		006/1		Job N	lo.	0	06	Sh	eet	1	of	6	
Client: Bio D	iverese Solu	itions				tion / F	Suay.		Lote	 & つ	Frenc	hman	Bay P	d Fre	nchma	an Ro	v		
Project Frenc	hman Bay F	Retreat			LUCa		Voau.		LUIS	1021	Tenci	man	Dayix	u, i ie		in Da	у.		
Project No. N/a	innan bay i	tonout			Tost	Dit No			TD1										
Excavation Metho	d · Excavat	ion			Test		Tar	net De	onth (r	nm)									
			lia I		- 4 - 4	1	i ai	180) nmm)		Sa	mple I	No.		16G	035		
Equipment type:	301.4 Duole	C MINI HYOI	aulici	zxcav	ator	Data	Comr		d.			20/00	1/2016				foron		
Operator/Contrac	buck	Southern (hnico		Date	Com	nence	u.			30/08	1/2010		GPS Reference				
Execution Dimo		Southern	seolec	mics		Date		neteu.			•	30/08	0/2010		⊑ 0	25	000 °5'24	25	
Longth 1	6 (m)	W/idth	0	35	(m)	Choo	kod B				N	1.Com	ey ov		3		tion	.30	
	<u>.o</u> (III)	width	<u>0.</u>	<u>55</u>	(111)	IChec	Keu D	<u>y</u> .				1.0010	J y			LIEV	auon		
			1		[r		T	I			Ι	[1			-		
Do	oth (mm)						lgt					0							
De	pui (iiiii)					_	rer		Э.			Ē							
Materia	l Descriptio	on				ioi	5		Ř			်း							
SOIL TYPE, Pla	acticity, Colour,	Particle			b	dit	۲,	Б Б	g (1		<u> </u>	l o	st		Coi	nme	nts		
characteristics, Se	econdary and c	ther minor	E		Ľ	l õ	en	ati	Ŀ.	Pa)	e v	cat	Te						
CO	mponents		Ę	Ê	hic	ں بہ ا	sist	ent	the	Ξ	۲ ۲	sifi	ple						
)ep	L)	rap	ois	ű	e	/eat	(50)	/ate	as	am						
				R	G	Σ	U U	Ú	3	<u>s</u>	\$	U U	Ő						
	0 - 500		-	—									-						
SAND with silt: Dark	grey to grey, f	ine to medium	-	-		м							-						
grained, roo	ots and root fib	res.	_	_															
			0.5										0.5_						
			-	_									-						
				_									-						
				—									-						
				_									1.0						
50	500 - 1800			_															
SAND with slit: L medi	um arained.	lite, fine to	_			М							_	wa	ter level	not en	counte	red	
			-	_															
			-	_															
			1.5	-									1.5_						
			-	-									-						
													_						
			-	_									_					-	
			2.0	_									2.0_						
			-	_									-						
			-	—									-						
			_	_									_						
			2.5										2.5						
			-	_									-						
Materials Consistency/St		stoncy/Stre	nath				I		I			Dit T	ormin	atod	at.	(h		
Cohesive NonCohesive		ngtil	Rock		1	S	ample	e / Te	st		rn n	ennin	ລເອບ ຄ	or ×	(mm)	elow g level	ground		
VS - Very Soft	VS - Very Soft VL - Very Loose EL - E		xtreme	ly Low		Ux -	Undist.	Tube S	ample		Та	rget De	pth	_ ✓ _		1800			
S - Soft	L - L	oose	VL	- Very I	_ow		D -	Disturb	ed Sarr	ple			Cave In	1				_	
F - Firm	MD - Med	um Dense		L - Low	/		F	R - Rock	Sampl	e			Refusa	i					
St - Stiff		ense v Dorac	M	- Mediu	um		DCP	- Dynan	nic Con	e Pen.		Ne	ear Refu	sal					
H - Hard	vu - vei	y Dense	√н	i i - ⊓igi - Verv I	' Hiah		PSP	- Perth	Sand F	neter Penet		Flooding							
EH - Extreme		ly High		ls (5	0) - Poi	nt load	Index				Reach Water								
Cementation Method of Excavat			tion Weathering					¥ Water first Encountered											
IN - Indura	IN - Indurated N - Natural Exposure			RS - Residual Soil					Moisture										
PC - Poorly Ce	mented		H - Han	d	XW - Extremely Weathered						D - Dry M - Moist W - Wet								
WC - Well Cor		E - Exis	ackboo	cavation Bucket	1	DW - Distinctly Weathered					General N/A - Not Applicable								
	nemeu	BHF	- Exca	vator		FR	ST - Fr	Svv - Slightly vveathered				N/A - NOT Applicable N/D - Not Determined							
		B - Bi	ulldozer	Blade		FR-Fresh PASS - Potential Acid Sul						Sulfate	e Soils						

G	Great Sol	uthern HNICS			Repo	ort No.		006/1		Job N	lo.	0	06	Sh	eet	2	of	6
Client: Bio D	iverese Sol	utions			Loca	tion / F	Road:		Lots	1&21	French	hman	Bay R	u d, Fre	nchma	an Bay		
Project: Frend	chman Bay I	Retreat											-			-		
Project No. N/a					Test	Pit No). 		TP2						1			
Excavation Metho	od : Excavat	ion				ł	lar	rget Do	epth (I Omm	nm)		Sa	imple l	No.		16G(036	
Equipment type:	301.4 Buck	FC Mini Hydi ot width 300	raulic	Excav	ator	Date	Comr	nence	d.			30/00	0/2016		G		foron	
Operator/Contrac	tor: Great	t Southern (Geotec	hnics		Date	Comr	oleted:	u.			30/08	a/2010			117°	256'5f	6 12
Excavation Dime	nsions:					Logg	ed By:	:			N	1.Coffe	ey		s		·5'35.	03
Length <u>1</u>	<u>.6</u> (m)	Width	<u>0.</u>	<u>35</u>	(m)	Chec	ked B	y:			N	I.Coff	ey			Eleva	tion	
			1		1	T	T	Т	1	r	1	1	r —	-				
	with (mana)						gth					ō						
De	pui (iiiii)					_	tren		(x)			۲, T						
Materia	l Descriptio	on Di li li			_	itior	S -		Ro Ro			S L			_			
SOIL TYPE, Pla characteristics, Se	acticity, Colour, econdary and c	Particle other minor	- -		Log	pud	ncy	tior	bu	e (vel	atio	Test		Co	mmen	its	
со	mponents		и) Ч	Ê	jc	Ŭ	iste	enta	heri	MP	Le L	ific	le/					
			ept	<u> </u>	rapl	oist	suo	eme	eat	(05)	ate	lass	amp					
				R	Ū	ž	Ŭ	Ŭ	3	s	3	Ū	ů					
			-	_		м							-					
Sandy GRAVEL: Br	0 -300 own, fine to me	edium gravel,		_									-					
sub-rounded to su	b angular, fine	to medium		_														
graineu sanu,	TOOLS AND TOOL		0.5_	_									0.5_					
			-	_		М							-					
			-	_									-					
3	00 - 800		_	_									_					
SAND with silt: Dark	AND with silt: Dark grey to grey, fine to me grained, roots and root fibres.			_									1.0					
grained, ro	grained, roots and root libres.		-	-									-	\A(-	4 1			
			-	-									-	vva	iter ieve	not enc	counter	rea.
			ľ –	-		IVI							-					
80 SAND with ailth Cro	00 - 1800 ov to light grow	white fine to	1.5										1.5_					
medi	ium grained.	white, line to	_	_									_					
			-	-									-					
													-					
			2.0	_									2.0_					
			_										_					
			-	_									-					
			-	-									-					
			2.5	_									2.5					
			_	_									_					
Materials Consistency/St		stency/Stre	ength	Deel		ł	S	Sample	e / Tes	st		Pit T	ermina	ated a	it:	(mm) b	elow g	ground
VS - Very Soft	VS - Very Soft VL - Very Loose		FI - F	xtreme			Ux -	Undist	Tube S	ample		Та	arget De	nth	∕or×		1800	
S - Soft	S - Soft L - Loose		VL	- Very	Low		D -	Disturb	ed San	nple			Cave Ir	1			1000	
F - Firm	MD - Med	ium Dense		L - Lov	/		F	R - Rock	c Sampl	e			Refusa	I				
St - Stiff	D - D)ense	М	- Medi	um		DCP	- Dynan	nic Con	e Pen.		Ne	ear Refu	Isal				
VSt - Very Stiff	VD - Ve	ry Dense		H - Hig	h 		P - F	Pocket F	Penetro	meter		Ι.	Flooding	g				
H - Hard				- Very	High Iv High		PSP	- Perth	Sand F	'enet. Index		Lao	ck of Re	ach	Water			
Cementation Method of Excavatio			ion		13 (5	Weat	hering				<u>ب</u> ل	Nater fi	rst Enco	ountered	1			
IN - Indurated N - Natural Exposure				RS - Residual Soil					Moisture									
PC - Poorly Cemented H - Hand				XW - Extremely Weathered						D - Dry M - Moist W - Wet								
MC - moderately	Cemented	E - Exis	ting Ex	cavatio	n		DW -	Distinc	tly Wea	eathered General								
WC - Well Cer	mented	BH - B	ackhoe	Bucket		SW - Slightly Weathered				N/A - Not Applicable N/D - Not Determined								
		B - Bi	⊏xca ulldozer	Blade		FRST - Fresh with Stained Surfaces FR - Fresh					005	PASS - Potential Acid Sulfate Soils						

Ģ	Great So GEOTEC	uthern HNICS			Repo	ort No.		006/1		Job N	lo.	0	06	Sh	eet	3	of	6
Client: Bio D Project: Frenc	iverese Soli hman Bay I	utions Retreat			Locat	tion / F	Road:		Lots	1 & 2	Frenc	nman	Bay R	d, Fre	nchma	an Bay	•	
Project No. N/a					Test	Pit No			ТР3									
Excavation Metho	od : Excavat	ion					Tar	get De	epth (r	nm)		Sa	mnle l	No		16G	137	
Equipment type:	301.4	C Mini Hyd	raulic	Excav	ator			180	0mm			04	inple	NO.		1000	557	
	Buck	et width 300	mm			Date	Comr	nence	d:			30/09	9/2016		G	PS Ref	feren	се
Operator/Contrac	tor: Grea	t Southern C	Geoteo	hnics		Date	Comp	leted:				30/09	9/2016		E	<u> </u>	56'54	1.99
Excavation Dimer	nsions:	Width	0	35	(m)	Logg					<u>IV</u>	1.Coffe	ey ev		S	35	5'35.	47
Length <u>1.</u>	<u>o</u> (m)	width	<u>U.</u>	<u>55</u>	(m)	Cnec	кеа в	y:			N	1.0010	ey			Eleva	uon	
							_ ۲					<u> </u>					•	
De	pth (mm)						ngt		_			lodi						
						Ę	Stre		ock)) Mu						
	I Descriptio	D articlo			5	litio	5		Ц Щ			L C	1		6	mmon	to	
characteristics, Se	econdary and c	other minor	Ê		Ľ l	puc		tio	ing	a)	vel	atic	Les			mmen	15	
COL	mponents		ц Ч	Ê	jc	Ŭ	iste	nta	heri	ШШ	Le	ific	le/					
			ept	5	apl	oist	suc) me	eat	50) (atei	ass						
				RI	ō	ž	ŭ	ŭ	3	Š	8	Ū	Š					
			-	-		м							-					
	0 - 300												_					
SAND with gravel:	Brown/grey, fir	e to medium	_	_									-					
rounded to sub-ang	medium graine jular, roots an	d grave, .sub- d root fibres	0.5_	-									0.5_					
			-	-									-	Roc	te note	d down t	0 1000)mm
			-	-									-			uowni	0 1000	
20	1900		-	-									-					
SAND with silt:	light grey to wh	ite, fine to	- 1.0	_		м							1.0					
medium grained	medium grained, roots and root fibres			_														
			h _	_									_					
			. –	_									_					
			1.5	_									1.5_					
			-	_									-					
			-	_									-	VV a	ater leve	el not en	counte	red
			<u> </u>															
			20	_									20					
			2.0	_									2.0_					
			-	_									-					
			_	_									_					
			2.5	_									2.5					
			-	_									-					
Materials Consistency/St		stency/Stre	ength							L		Pit T	ermin	ated a	at:	(mm) b		round
Cohesive NonCohesive			Rock			3	ampi	e/ie:	51					or ×	(1111) 5	level	round	
VS - Very Soft VL - Very Loose		EL - E	xtreme	ly Low		Ux -	Undist.	Tube S	ample		Та	rget De	pth	 ✓ 		1800		
S - Soft L - Loose		VL	- Very	Low		D -	Disturb	ed Sam	nple			Cave Ir	1					
F - Firm	F - Firm MD - Medium Dense St - Stiff D - Dense			L - Lov	/		F	R - Rock	Sampl	e			Refusa	I				
St - Stiff D - Dense M - VSt - Verv Stiff VD - Verv Dense H			- Medi	um		DCP	- Dynan	nic Con	e Pen.		Ne Ne	ear Refu	isal ~					
VOL - Very Still H - Hard	vu - ve	y Dense	\/⊔	- Venv	Hiab			- Parth	Sand E	Penet				y ach				
EH - Extrem		xtreme	ly Hiah		ls (5	0) - Poi	nt load	Index					Water	•				
Cementation Method of Exceva		cavat	ion			Weat	herind	1			¥ \	Nater fi	rst Enco	ountered				
IN - Indurated N - Natural Exposure				R	S - Res	idual S	oil		Moisture									
PC - Poorly Ce	mented	1	H - Han	d			XW -	Extreme	ely Wea	thered		D - Dry M - Moist W - Wet						
MC - moderately	Cemented	E - Exis	ting Ex	cavatio	n	DW - Distinctly Weathered				General								
WC - Well Cer	mented	BH - B	ackhoe	Bucket	cket SW - Slightly Weathered				N/A - Not Applicable									
		BHE	- Exca		FRST - Fresh with Stained Surfaces				N/D - Not Determined									
		B - Bi	B - Bulldozer Blade				ade FR - Fresh						PASS - Potential Acid Sulfate Soils					

9	Great Sou	uthern HNICS			Repo	ort No.		006/1		Job N	lo.	0	06	Sh	eet	4	of	6
Client: Bio D	iverese Soli	utions			Loca	tion / F	Road:		Lots	1 & 2 F	- rencl	nman	Bay R	d, Fre	nchma	an Bay		
Project: Frenc	hman Bay I	Retreat																
Project No. N/a					Test	Pit No	·		TP4						1			
Excavation Metho	od : Excavat	ion					Tar	get De	epth (r	nm)		Sa	mple I	No.		16G	038	
Equipment type:	301.4	C Mini Hydi	raulic	Excav	ator			180	umm									
Operator/Ceptree	Bucke	et width 300	mm	hnion		Date	Com	nence	d:			30/09	0/2016				teren	
	ior. Grea	Southern	Seolec	mics			ed By	neteu.			N	30/08	9/2010 2V		. ⊑ 	35	20 23 5'35	73.01
Length 1.	6 (m)	Width	0.3	35	(m)	Chec	ked B	V:			N	1.Coffe	ev			Fleva	tion	15
	()		-		()	10		<i>.</i>					-,					
De Materia SOIL TYPE, Pla	pth (mm) I Descriptic	on Particle			0	dition	y/ Strength	Ę	(Rock)		_	on Symbol	it		Co	mmer	nts	
characteristics, Se	econdary and c	ther minor	Depth (m)	RL (m)	Graphic Lo	Moist. Conc	Consistenc	Cementatio	Weathering	Is ₍₅₀₎ (MPa)	Water Level	Classificati	Sample/Tes		00	ininei	1.5	
			_	_									_					
	0 600		_	_									_					
SAND with silt: Dark	grey to grey, f	ine to medium	_	_		м							-					
grained, roo	ots and root fib	res.	_	-									-					
			0.5_	-									0.5_					
				_									_					
			_	_														
			_										_					
			1.0	_									1.0					
			-	_									-					
60	600 - 1800			_		м							-					
SAND with silt: Dark	grey to grey, f grained.	ine to medium	-	-									-	VV a	ater leve	l not en	counte	red
	,		-	-									-					
			1.5	-									1.5_					
			-	-									-					
			-	_									-					
				_														
			2.0										2.0_					
			_	_									_					
18	00 - 1900		-	_									-					
SAND with silt: Lig	ht grey/light b	rown, fine to	-	_		м		PC					-					
medium grained with medium graine	pockets of dari	c brown fine to SAND.	-	_									-					
	medium gramed, comented 0744D.		2.5	-									2.5					
			-	-									-					
Materials Consistency/Str		ngth				-					Pit Te	ermina	ated a	at:	(mm) !		round	
Cohesive NonCohesive			Rock		1	5	ample	e/les	st				,	∕ or ×	(11111) L	level	Touria	
VS - Very Soft VL - Very Loose E		EL - E	xtreme	ly Low		Ux -	Undist.	Tube S	ample		Та	rget De	pth	~		1800		
S - Soft	L - L	oose	VL	- Very	Low		D -	Disturb	ed Sam	nple			Cave In	ı				
F - Firm	MD - Med	um Dense		L - Lov	/		F	R - Rock	Sampl	е			Refusa	I				
St - Stiff	D - D	lense	M	- Medi	um		DCP	- Dynan	nic Con	e Pen.		Ne	ear Refu	Isal				
VSt - Very Stiff	VD - Vei	y Dense		H - Hig	n Hiab		P - F	OCKet F	enetroi	meter			Flooding	g Jach				
n - naru			EH - F	- very	ly Hiah		rop Is (5	- Perm 0) - Poi	nt load	Index		Lac		aun	Water			
Cementation Method of Excava		ion		13 (3	Weat	herinc	1		1	¥ .	Nater fi	irst Enco	ountered	1				
IN - Indurated N - Natural Exposure				R	S - Res	sidual S	oil		Moisture									
PC - Poorly Ce	mented	1	H - Han	d			XW -	Extreme	ely Wea	athered		D - Dry M - Moist W - Wet						
MC - moderately	Cemented	E - Exis	ting Exe	cavatio	n		DW -	Distinct	tly Wea	thered		General						
WC - Well Cer	mented	BH - B	ackhoe	Bucket	t	SW - Slightly Weathered					N/A - Not Applicable							
		BHE	- Exca	vator		FRST - Fresh with Stained Surfaces				N/D - Not Determined								
		B - Bi	ulldozer	Blade		FR - Fresh						PASS - Potential Acid Sulfate Soils						

Ģ	Great Sou GEOTEC	uthern HNICS			Repc	ort No.		006/1		Job N	lo.	0	06	Sh	eet	5	of	6
Client: Bio D	iverese Sol	utions			Loca	tion / F	Road:		Lots	1 & 2	French	nman	Bay R	d, Fre	nchma	an Ba	у.	
Project: Frence	hman Bay I	Retreat							TDE									
Excavation Metho	d · Excavat	tion			Tesi	Pit inu T	Tar	net De	epth (r	nm)		I						
Fauipment type:	301.4	C Mini Hydr	raulic	Excav	ator	1		180	0mm	,		Sa	imple I	No.		16G	039	
	Buck	et width 300	mm			Date	Comn	nence	d:			30/09	9/2016		G	PS Re	eferen	ce
Operator/Contrac	tor: Great	Southern C	Seotec	hnics		Date	Comp	leted:				30/09	9/2016		E	117	"56'52	2.42
Excavation Dime	nsions:	14/:-146	0	05	(Logg	ed By:				N	1.Coffe	әу		S	35	<u>5'36.</u>	.08
Length <u>1</u> .	<u>6</u> (m)	VVIAtri	<u>U.</u>	<u>35</u>	(m)	Cnec	кеа ь	y:			IV	1.000	ey			Eleva	ation -	
							_ ج	[Γ_			1			
De	pth (mm)						bue		-			oqu						
Matoria	l Descriptio	n				5	Stre		sock			Syr						
SOIL TYPE, Pla	cticity, Colour,	Particle			D	diti	رد در	5	g (R		-	io	st		Co	mme	nts	
characteristics, Se	econdary and c	ther minor	E		L C	Con	ten	tati	l ing	Pa)	e c	icat	j/Te					
	mponento		pth	E	ihq	ist.	nsis	nen	athe	N N	ter	ssif	hple					
			De	RL	Gra	ъ	0 C	Cel	We	IS(50	Wa	Cla	Sar					
			_	-		м							-					
	0 - 200																	
Sandy GRAVEL: G	irey/brown, fine	e to medium	_	_									-					
gravel, sub-rounde medium grained s	ed to sub-round and, roots and	led, fine to root fibres	0.5_	-									0.5_					
			-	-		м							-	Roots	and ro	ot fibre	s noted	down
			_	-		IVI							-		to	350mr	n	
20	00 - 1200												_					
SAND with silt: Ligh	t grey/white, fi	ne to medium	1.0	_									1.0					
Į į	grained.		-	-									-					
													-					
				-									_					
12 SAND with silt:	00 - 1800 ight brown/voll	low fino to	1.5			м		PC					1.5_					
medium grained, r	nottled dark br	own fine to	-	_									-					
medium grained, o	cemented SAN	D with silt.	-	-									-	VVa	ater leve	i not er	icounte	red
													_					
			2.0	_									2.0_					
			-	-									-					
			-	-									-					
			-	-									-					
			2.5										2.5					
			_	_									-					
Materials Consistency/St		atonov/Stre		L	L							Dit T			4 .			
Cohesive NonCohesive		hesive	ngui	Rock	(1	S	ample	e / Tes	st			emm	aleu a	nu. ∕or×	(mm)	below g level	ground
VS - Very Soft VL - Very Loose		ry Loose	EL - E	Extreme	ly Low		Ux - I	Undist.	Tube S	ample		Та	irget De	pth	1		1800	
S - Soft L - Loose		oose	VL	- Very	Low		D -	Disturb	ed San	nple			Cave Ir	ı		ļ		
F - Firm MD - Medium Dense		um Dense		L - Low	v		F	R - Rock	Sampl	e			Refusa	I .				
St - Stiff		ense	м	- Mediu	um b			- Dynan	nic Con	e Pen.		Ne	ear Refu	isal				
H - Hard	VD - Vei	y Dense	VH	- Very	High		PSP	- Perth	Sand F	Penet.		Lao	ck of Re	ach				
ЕН		EH - E	Extreme	ely High		ls (5	0) - Poi	nt load	Index					Water	-			
Cementation Method of Ex		of Ex	cavat	ion			Weat	hering	9			<u>▼</u> \	Vater fi	rst Enco	ountere	d		
IN - Indura	ted	N - Na	tural Ex	posure	I.	RS - Residual Soil				I				loistu	re			
PC - Poorly Ce	mented Cemented	E - Evis	H - Han	d cavatio	n		XW -	Distinct	ely Wea thy Wea	thered			D - L	- Dry M - Moist W - Wet General				
WC - Well Cer	nented	BH - B	ackhoe	Bucket	t	DW - Distinctly Weather			Veathered			N/A - Not Applicable						
		BHE	- Exca	vator		SW - Slightly Weather FRST - Fresh with Stained S			ined Surfaces			N/D - Not Determined						
	B		ulldozer	Blade FR - Fresh					PASS - Potential Acid Sulfate Soils									

Ģ	Great Sol	uthern HNICS			Repo	ort No.		006/1		Job N	lo.	0	06	Sh	eet	6	of	6
Client: Bio D	iverese Sol	utions			Loca	tion / F	Road:		Lots	1 & 2 F	Frencl	hman	Bay R	d, Fre	nchma	an Bay	<i>'</i> .	
Project: Frenc	hman Bay I	Retreat																
Project No. N/a					Test	Pit No			TP6						1			
Excavation Metho	od : Excavat	ion		_		4	lar	get D	epth (r 0mm	nm)		Sa	imple I	No.		16G	040	
Equipment type:	301.4 Duals	C Mini Hydi	raulic I	Excav	ator	Data	<u> </u>	100				20/00	10046				faran	
Operator/Contrac	tor: Great	Southern C	mm Pootoc	hnice		Date	Com	nence	a:			30/05	3/2016 0/2016			PS Re 117	rerent	
Excavation Dimer	nsions:		Jeolec	111105			ed By:	neteu.			N		ev		S S	35	°5'36	63
Length <u>1</u> .	<u>6</u> (m)	Width	<u>0.</u> ;	35	(m)	Chec	ked B	v:			N	1.Coff	ev			Eleva	tion	
<u>_</u>	_ ()					1		,									-	
De Materia SOIL TYPE, Pla characteristics, Se	pth (mm) I Descriptic acticity, Colour, econdary and c	o n Particle ther minor	(u		Log	ondition	ency/ Strength	ition	ing (Rock)	a)	ivel	ation Symbol	Fest		Co	mmer	nts	
COL	mponents		h (r	(r	hic	Ŭ	iste	ente	her	MP	r Le	lific	le/					
			ept	L L	rapl	oist	suo	eme	eat	(05)	ate	lass	amp					
				R	Ū	Ž	ŭ	ŭ	≥	Š	≥	Ū	Š					
			-	_									-					
			-	-									-	Roots	and ro	ot fibres	noted	down
() - 1200		-	_									-		to	o 500mn	n	
SAND with silt: I grained, ro	ight grey, fine ots and root fit	to medium pres	0.5_	_		м							0.5_					
, , , , , , , , , , , , , , , , , , ,			_										_					
			_	_									_					
			-	_									-					
			-	_									1.0					
			1.0	-									1.0					
			_	_									_					
			_										_					
12	00 - 1800		_	_									-					
SAND with silt: L	ight brown/yel	ow, fine to	1.5	_		М		PC					1.5_	Wa	ater leve	el not en	counte	red
medium grained, o	cemented SAN	D with silt.	-	_									-					
			-	-									-					
-			_															
			2.0	_									2.0_					
			-	_									-					
			-	_									-					
			-	-									-					
			- 2.5	_									2.5					
			_															
Mate	rials Consi	stency/Stre	ength			ł	s	ampl	e / Tes	st		Pit T	ermina	ated a	it:	(mm) t	below g	round
Cohesive NonCohesive VS - Very Soft VL - Very Loose			Rock			Use	-	Tuba C			Te		••••••••	or ×		level		
S - Soft	S - Soft L - Loose			- Verv			UX - 1	Disturb	ed Sam	ampie		18	Cave In	pm	×		1800	
F - Firm	MD - Med	um Dense		L - Lov	/		F	R - Rock	sampl	e			Refusa	I				
St - Stiff	D - D	ense	м	- Medi	um		DCP	- Dynan	nic Con	e Pen.		Ne	ear Refu	isal				
VSt - Very Stiff	VD - Ve	y Dense	'	H - Hig	h		P - F	Pocket F	Penetro	meter			Flooding	9				
H - Hard			VH	- Very	High		PSP	- Perth	Sand F	Penet.		La	ck of Re	ach				
EH - Extrem		xtreme	ion		ls (5	0) - Poi	nt load	Index			. ⊻ .	Noto- F	vvater		4			
Cementation Method of Excava					R	S - Res		j oil		✓ Water first Encountered								
PC - Poorly Ce	mented	14-144	H - Han	d			XW -	Extrem	ely Wea	athered		D - Dry M - Moist W - Wet						
MC - moderately	Cemented	E - Exis	ting Exe	cavatio	n	XW - Extremely Weathered DW - Distinctly Weathered				General								
WC - Well Cer	nented	BH - B	ackhoe	Bucket	t		SW	- Slightl	y Weatl	hered		N/A - Not Applicable						
		BHE	- Exca	vator		FRST - Fresh with Stained Surfaces				N/D - Not Determined								
		B - Bı	ulldozer	Blade	3lade FR - Fresh					PASS - Potential Acid Sulfate Soils								

Fieldwork

The fieldwork was carried out on September 30, 2016 and comprised the following:

Six (6) test pits excavated with a 301.4C Mini Hydraulic Excavator using a 300mm wide bucket to depths of 1.8 m to visually assess subsurface conditions and obtain samples for laboratory testing.

The approximate test locations are shown on **Figure 2**.

Test Pit No. 1 Spoil

Test Pit No. 1 Excavation

Job No: 006 Test Pit No: TP1 Client: Bio Diverese Solutions Project: Proposed Frenchman Bay Retreat - Lots 1 & 2 Frenchman Bay Rd, Frenchman Bay

Test Pit No. 2 Spoil

Test Pit No. 2 Excavation

Job No: 006 Test Pit No: TP2 Client: Bio Diverese Solutions Project: Proposed Frenchman Bay Retreat - Lots 1 & 2 Frenchman Bay Rd, Frenchman Bay

Test Pit No. 3 Spoil

Test Pit No. 3 Excavation

Job No: 006 Test Pit No: TP3 Client: Bio Diverese Solutions Project: Proposed Frenchman Bay Retreat - Lots 1 & 2 Frenchman Bay Rd, Frenchman Bay

Test Pit No. 4 Spoil

Test Pit No. 4 Excavation

Job No: 006 Test Pit No: TP4 Client: Bio Diverese Solutions Project: Proposed Frenchman Bay Retreat - Lots 1 & 2 Frenchman Bay Rd, Frenchman Bay

Test Pit No. 5 Spoil

Test Pit No. 5 Excavation

Job No: 006 Test Pit No: TP5 Client: Bio Diverese Solutions Project: Proposed Frenchman Bay Retreat - Lots 1 & 2 Frenchman Bay Rd, Frenchman Bay

Test Pit No. 6 Spoil

Test Pit No. 6 Excavation

Job No: 006 Test Pit No: TP6 Client: Bio Diverese Solutions Project: Proposed Frenchman Bay Retreat - Lots 1 & 2 Frenchman Bay Rd, Frenchman Bay

Dry Density/Moisture Content Relationship Test Report

Job No.	006		
Client:	Bio Diverese Solutions	Report No.	006/1
Project:	Lots 1 & 2 Frenchman Bay Road Albany WA		Sheet 1 of 1

Sample No.	Sample Location	Field Description
16G041	Test Pit 1	SAND with silt
16G042	Test Pit 6	SAND with silt

Sample Number		16G041 🔴	16G042 ●	•
Depth		0mm to 500mm	0mm to 1200mm	
Stabiliser Used				
Stabiliser Added %				
Curring Denied	Water (Days)	0.00	0.00	
Curing Period	Stabiliser (Hrs)			
Moisture Content M	ethod used	AS 1289.2.1.1	AS 1289.2.1.1	
Sampling Method		AS 1289.1.2.1 Proc 6.5	AS 1289.1.2.1 Proc 6.5	
Date Sampled		30/09/2016	30/09/2016	
Date Received		30/09/2016	30/09/2016	
Date Tested		4/09/2016	4/09/2016	
Test Method		AS 1289.5.2.1	AS 1289.5.2.1	
Maximum Dry Dens	ity t/m ³	1.73	1.64	
Optimum Moisture (Content %	15.0	14.0	
Adjusted Maximum	Dry Density t/m3			
Adjusted Optimum N	Noisture Content %			
Percentage Retaine	d % 37.5 mm	0	0	
Percentage Retained % 19.0 mm		0	0	

Comments:	N/a	Approved Signatory:	65
		Name:	M.Coffey
Distribution:	Laboratory File / Kath Kinnear - Bio Diverse Solutions	Function:	Laboratory Manager
		Date:	5/10/2016

Dry Density / Moisture Content Relationship

Falling Hea	d Permeability Report	Test Method: AS 1289.6.7.2		
Client:	Great Southern Geotechnics	Ticket No:	S149	
Project:	Lots 1 & 2 Frenchman Bay Road (Bio Diverse Solutions)	Report No:	LL16/538_1	
Location:	Albany, WA	Sample No:	LL16/538	
Sample ID:	16G041 - TP1 0mm - 500mm	Issue Date:	17-October-2016	
Sampling Pr	ocedure: Tested as Received			
	Laboratory Moisture Ratio (%)		97.5	
	Laboratory Density Ratio (%)		95.0	
	Compactive Effort		Modified	
	Hydraulic Gradient		N/A	
	Surcharge (kPa)		3	
	% Retained on 19mm Sieve		0	
Coe	efficient of Permeability (m / sec)	2	2 x 10 (⁻⁶)	

Client Address: 5a 209 Chester Pass Road, Albany WA 6330

Comments: MMDD/OMC supplied by client

This document is issued in accordance with NATA's accreditation requirements. This document may only be reproduced in full. Accreditation No 19872 Accredited for Compliance with ISO/IEC 17025

Myra

Approved Signature:Image: Image: Image:

Constant H	lead Permeability Report	Test Method: AS 1289.6.7.1		
Client:	Great Southern Geotechnics	Ticket No:	S149	
Project:	Lots 1 & 2 Frenchman Bay Road (Bio Diverse Solutions)	Report No:	LL16/539_1	
Location:	Albany, WA	Sample No:	LL16/539	
Sample ID:	16G042 - TP6 0mm - 1200mm	Issue Date:	17-October-2016	
Sampling P	rocedure: Tested as Received			
	Laboratory Moisture Ratio (%)		101.0	
	Laboratory Density Ratio (%)		95.0	
	Compactive Effort		Modified	
	Hydraulic Gradient		0.6	
	Surcharge (kPa)		3	
	% Retained on 19mm Sieve		0	
Coe	efficient of Permeability (m / sec)	5.	7 x 10 (⁻⁵)	

Client Address: 5a 209 Chester Pass Road, Albany WA 6330

Comments: MMDD/OMC supplied by client

This document is issued in accordance with NATA's accreditation requirements. This document may only be reproduced in full. Accreditation No 19872 Accredited for Compliance with ISO/IEC 17025

Myn

Approved Signature:Image: Image: Image:

Lots 1 & 2 Frenchman Bay Road, Albany WA

Lab Number	Name	Code	Customer	Depth (mm)	Phosphorus Retention Index
2TS16095	Pit 1	Job#2 - MSC125	Frenchman Bay Retreat	0-500	0.1
2TS16096	Pit 6	Job#2 - MSC125	Frenchman Bay Retreat	0-1200	0.7

Appendix B

Site Soil Investigation – Great Southern Geotechnics (2018)

VERSION 1 Report No 302/1 APRIL 11, 2018

SITE INVESTIGATION

Bio Diverse Solutions Lots 1 & 2 Frenchman Bay Rd, Albany WA 6330

PRESENTED BY: M.COFFEY

GREAT SOUTHERN GEOTECHNICS 5A 209 CHESTER PASS RD, ALBANY WA ACN: 613 485 644 ABN: 77 613 485 644 Info@gsgeotechnics.com

1.0 INTRODUCTION

As authorised by Kathryn Kinnear of Bio Diverse Solutions, a site investigation for the proposed development at Lots 1 & 2 Frenchman Bay Rd, Albany WA 6330A 6324 was preformed on the 22nd of March, 2017.

2.0 GENERAL

This purpose of the investigation was to determine the following:

- Surface site conditions
- Subsurface soil profiles
- Depth of ground water tables .
- Permeability rates of soils encountered .

3.0 SITE INVESTIGATION

Site conditions and Test pit locations were recorded and are shown in Appendix 1

The field investigation consisted of six test pits excavated on-site to depths of up to 2.0m using a Kubota KX41-3V Mini Excavator with a 300mm wide Hydraulic open flight auger attachment.

All soil layers encountered were visually assessed and classified on-site

The subsurface soil profiles are shown on the Test pit logs located in Appendix 1

IMPORTANT NOTE: We have endeavoured to locate the test pits so that they are representative of the subsurface materials across the site. However, soil conditions may change dramatically over short distances and our investigations may not locate all soil variations across the site.

This report and associated documentation was undertaken for the specific purpose described in the report and shall not be relied on for other purposes. This report was prepared solely for the use by Bio Diverse Solutions and any reliance assumed by other parties on this report shall be at such parties own risk.

COLOURS

MOISTURE CONDITION OF SOIL

TERM	DESCRIPTION
Dry	Cohesive soils; hard and friable or powdery, well dry of plastic limit. Granular soils; cohesionless and free-running.
Moist	Soil feels cool, darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	Soil feels cool, darkened in colour. Cohesive soils usually weakened and free water forms on hands when handling. Granular soils tend to cohere and free water forms on hands when handling.

PARTICLE SHAPES

ANGULAR	SUB-ANGULAR	SUB-ROUNDED	ROUNDED	
		4	$\bigcirc \bigcirc$	

PARTICLE SIZES

BOULDERS	COBBLES	COARSE GRAVEL	MEDIUM GRAVEL	FINE GRAVEL	COARSE SAND	MEDIUM SAND	FINE SAND	SILT	CLAY
>200mm	63- 200mm	20- 63mm	6- 20mm	2.36- 6mm	0.6- 2.36mm	0.2- 0.6mm	0.075- 0.2mm	0.002- 0.075mm	<0.002mm

GRAIN SIZE

SOIL TYPE (ABBREV.)	CLAY (CL)	SILT (SI)	<	SAND (SA)	\longrightarrow	<	_ GRAVEL (GR)	\longrightarrow	COBBLES (CO)
SIZE	< 2 µ m	2-75 µ m	Fine 0.075- 0.2mm	Medium 0.2-0.6mm	Coarse 0.6-2.36mm	Fine 2.36-6mm	Medium 6-20mm	Coarse 20-63mm	63-200mm
SHAPE & TEXTURE	Shiny	Dull	<	angul	ar or subangı	lar or subro	ounded or ro	ounded	\longrightarrow
FIELD GUIDE	Not visible under 10x	Visible under 10x	Visible by eye	Visible at < 1m	Visible at < 3m	Visible at < 5m	Road gravel	Rail ballast	Beaching

CLASSIFICATION CHART

	(Excludin	g particles]	FIELD IDEN larger than	WTIFICATION PROCEDURES 60mm and basing fraction	ons on estimated mass)		GROUP SYMBOLS	TYPICAL NAMES	
than	ar se than	AN ELS le or nes)	Wide intermedia	range in grain size an ate sizes, not enough f stre	nd substantial amounts o ines to bind coarse grai ength	f all ins, no dry	GW	Well graded gravels, gravel-sand mixtures, little or no fines	
s larger	/ELS)% of co larger † 6mm	CLE GRAV (Litt no fi	Predomin sizes m	antly one size or range issing, not enough fine stre	e of sizes with some int es to bind coarse grains ength	ermediate , no dry	GP	Poorly Graded gravels and gravel-sand mixtures, little or no fines, uniform gravels	
LLS 63 mm it	GRAV than 50 tion is 2.3	/ELS FINES eciabl int of es)	Dirty' ma	terials with excess of dry st	non-plastic fines, zero trength	to medium	GM	Silty gravels, gravel-sand-silt mixtures	
INED SOI ss than 5 mm	More	GRAV WITH (Appre e amou fin	'Dirty' ma	aterials with excess of stre	plastic fines, medium t ength	to high dry	GC	Clayey gravels, gravel-sand-clay mixtures	
ARSE GRA erial le 0.07	arse than	SANDS le or lnes)	Wide intermedia	range in grain size an ate sizes, not enough fi stre	nd substantial amounts o ines to bind coarse grai ength	f all ins, no dry	SW	Well graded sands, gravelly sands, little or no fines	
co² than 50% of mat∈	VDS 3% of co smaller 6mm	CLEAN (Litt no f:	Predomin sizes m	antly one size or range issing, not enough fine stree	e of sizes with some int es to bind coarse grains ngth '	ermediate , no dry	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	
	SAN than 50 tion is 2.3	sAl tion is 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2 1.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		naterials with excess of non-plastic fines, zero to medium dry strength			SM	Silty sands, sand-silt mixtures	
More	More fraci	SANDS FIN (Appre e amou fin	'Dirty' ma	aterials with excess of stre	f plastic fines, medium to high dry rength		SC	Clayey sands, sand-clay mixtures	
ч		IDENTIFICATION PROCEDURES ON FRACTIONS <0.2mm							
alle	20	DRY ST	RENGTH	DILATANCY	TOUGHNESS				
3 mm is smu	D CLAYS less than	o CIAYS enov than tess		Quick to slow	None		ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands with low plasticity. Silts of low to medium Liquid Limit.	
soILS s than 6 m	sırrs AN d limit	Medium t	to high	None to very slow	Medium		CL, CI	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays.	
GRAINED cial les: than 0.075 m	Liquic	by Low to mediu		Slow	Low		OL	Organic silts and organic silt- clays of low to medium plasticity.	
FINE of mater	ulars mit un 50	Low to	medium	Slow to none	Low to mediur	Low to medium		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, silts of high Liquid Limit.	
than 50%	TS AND C Iquid li ater tha	High to v	ery high	None	High		СН	Inorganic clays of high plasticity.	
More	SIL SI Gre	Medium t	to high	None to very slow	Low to medium	m	ОН	Organic clays of high plasticity	
HIGHLY ORGANIC SOILS Readily identified by colour, odour, spongy feel and frequently by fibrous texture			Pt	Peat a	nd other highly organic soils				

PLASTICITY CHART

PLASTICITY

DESCRIPTIVE TERM	OF LOW PLASTICITY	OF MEDIUM PLASTICITY	OF HIGH PLASTICITY
Range Of Liquid Limit (%)	≤ 35	> 35 ≤ 50	> 50

DESCRIPTION OF ORGANIC OR ARTIFICIAL MATERIALS

PREFERRED TERMS	SECONDARY DESCRIPTION
Organic Matter	Fibrous Peat/ Charcoal/ Wood Fragments/ Roots (greater than approximately 2mm diameter)/ Root Fibres (less than approximately 2mm diameter)
Waste Fill	Domestic Refuse/ Oil/ Bitumen/ Brickbats/ Concrete Rubble/ Fibrous Plaster/ Wood Pieces/ Wood Shavings/ Sawdust/ Iron Filings/ Drums/ Steel Bars/ Steel Scrap/ Bottles/ Broken Glass/ Leather

CONSISTENCY - Cohesive soils

TERM	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD
Symbol	VS	S	F	St	VSt	Н
Undrained Shear Strength (kPa)	< 12	12 - 25	25 - 50	50 - 100	100 - 200	> 200
SPT (N) Blowcount	0 - 2	2 - 4	4 - 8	8 - 15	15 - 30	> 30
Field Guide	Exudes between the fingers when squeezed	Can be moulded by light finger pressure	Can be moulded by strong finger pressure	Cannot be moulded by fingers. Can be indented by thumb nail	Can be indented by thumb nail	Can be indented with difficulty with thumb nail

CONSISTENCY - Non-cohesive soils

TERM	VERY LOOSE	LOOSE	MEDIUM DENSE	DENSE	VERY DENSE	COMPACT
Symbol	VL	L	MD	D	VD	со
SPT (N) Blowcount	0 - 4	4 - 10	10 - 30	30 - 50	50 - 100	> 50/150 mm
Density Index (%)	< 15	15 - 35	35 - 65	65 - 85	85 - 95	> 95
Field Guide	Ravels	Shovels easily	Shovelling very difficult	Pick required	Pick difficult	Cannot be picked

MINOR COMPONENTS

TERM	TRACE	WITH
% Minor Component Field Guide	Coarse grained soils: < 5% Fine grained soils: <15% Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary components	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30% Presence easily detectable by feel or eye, soil properties little different to general properties of primary component

GEOLOGICAL ORIGIN

	TYPE	DETAILS
TRANSPORTED SOILS	Aeolian Soils	Deposited by wind
	Alluvial Soils	Deposited by streams and rivers
	Colluvial Soils	Deposited on slopes
	Lacustrine Soils	Deposited by lakes
	Marine Soils	Deposited in ocean, bays, beaches and estuaries
FILL MATERIALS	Soil Fill	Describe soil type, UCS symbol and add 'FILL'
	Rock Fill	Rock type, degree of weathering, and word `FILL'.
	Domestic Fill	Percent soil or rock, whether pretrucible or not.
	Industrial Fill	Percent soil, whether contaminated, particle size & type of waste product, i.e. brick, concrete, metal

STRENGTH OF ROCK MATERIAL

TERM	SYMBOL	IS(50)	(MPA)	FIELD GUIDE TO STRENGTH
Extremely Low	EL	≤0.03		Easily remoulded by hand to a material with soil properties.
Very Low	VL	>0.03	≤0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxle sample by hand. Pieces up to 3 cm thick can be broken by finger pressure.
Low	L	>0.1	≤0.3	Easily scored with a knife; indentations 1 mm to 3 mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150 mm long by 50 mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium	М	>0.3	≤1.0	Readily scored with a knife; a piece of core 150 mm long by 50 mm diameter can be broken by hand with difficulty.
High	Н	>1	≤3	A piece of core 150 mm long by 50 mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High	VH	>3	≤10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High	EH	>10		Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

ROCK MATERIAL WEATHERING CLASSIFICATION

TERM	SYMBOL	DEFINITION
Residual Soil	RS	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but the soil has not been significantly transported
Extremely Weathered Rock	XW	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrates or can be remoulded, in water.
Distinctly Weathered Rock	DW	Rock strength usually changed by weathering. Rock may be highly discoloured, usually be ironstaining. Porosity may be increased by leaching or may be decreased due to deposition of weathering products in pores.
Slightly Weathered Rock	SW	Rock is slightly discoloured but shows little or no change of strength from fresh rock.
Fresh Rock	FR	Rock shows no sign of decomposition or staining.

Appendix 1 Test Pit Logs

Figure 1 - Lots 1 & 2 Fenchman Bay Rd, Albany WA 6330

Figure 2 - Approximate Test Pit Locations

Job No: Client: Project:

lo: 302
t: Bio Diverse Solutions
ct: Lots 1 & 2 Fenchman Bay Rd, Albany WA 6330

5 °	GREAT SC	OUTHERN GEO RUCTION MATERIALS	DTECHNICS TESTING	Job No 302	o	Report No 302/1			She	et 1	of 6		
Client: Project: Project No Location: Test Pit No	Bio D Lots 1 D. N/A Propo o.: TP1	iverse Solutions 1 & 2 Fenchman B osed Building Enve Sample No.	ay Rd, Albany WA lope 18G671	6330		Operator/Contrac Equipment type: Excavation Meth Position: Elevation:	ctor: GS Ku od: 30 50 n/a	G bot 0m H t	a KX4 m Aug 586602	1-3V ger 2 6116	6250		
Date Com Date Com	menced: pleted:	22.03.2018 22.03.2018	Logged By: Checked By:	M.Coffe M.Coffe	ey ey	Excavation Dime Depth 2.	nsions: .0 (m)	Wid	ith	C).3	(m)
Depth Below Surface (mm)	Layer Depth (mm)	SOIL TYPE, Pla	Materia sticity, Colour, Par minor	al Descriptio ticle characto components	on teristics, s	Secondary and c	other ther		Consistency / Strength	Cementation	Water Table	Classification Symbol	Sample/Test
0 - 400	400	(Topsoil) S	AND with silt: Dark	grey, fine to m	nedium. F	Roots & root fibres.	Ν	Л	L				
	400		0.4110										
400 - 800	400		SAND with slit	: Grey, fine to	meaium.		N	Л	L				
800 - 2000	1200	S	AND with silt: Light	grey to white,	fine to m	edium.	Ν	Л	L				
											-		
								_				<u> </u>	
											ered		
											ount	<u> </u>	
								_			enc		
											table		
											ater 1		
								_			0 Ň	<u> </u>	
											–	<u> </u>	
												<u> </u>	
								_					
			Comments				Pit	Ter	minate	ed at:	(mm)	below g	ground
								((or ×		r	level	
							la	rget Cav	Depth e In	~		2000	
								Refi	usal				
							Ne	ar F	Refusal				
							F	=loo	ding				
M	aterials Consi	istency/Strength	R	ock		Cementation	Lac	k of	Reach		ator		
VS - V	ery Soft	VL - Verv Loos	e EL - Extre	emely Low					Wate	r first F	Encour	ntered	
S -	Soft	L - Loose	VL - V	ery Low		IN - Indurated				Mois	sture		
F -	Firm	MD - Medium De	nse L-	Low	P	C - Poorly Cemented	1	D	- Dry	M - N	Noist	W - W	et
St -	Stiff	D - Dense	M - M	ledium	MC ·	- moderately Cemen	ted			Ger	neral		
VSt - V H - I	rery Stiff Hard	VD - Very Dens CO - Compact	e H - VH - Ve EH - Extre	ਸਾgn ery High ∋mely High		vC - vvell Cemented			N/A N/D	a - Not - Not I	Applica Determ	able ined	

5

GREAT SOUTHERN GEOTECHNICS

Job No: Client: Project:

302 Test Bio Diverse Solutions Lots 1 & 2 Fenchman Bay Rd, Albany WA 6330

Test Pit No:

TP1

Test Pit No. 1 - Spoil

9 °	REAT SO	UTHERN GEC	TECHNICS TESTING	Job No 302	o	Report No 302/1			She	et 2	of 6		
Client: Project: Project No Location: Test Pit No	Bio D Lots 1 D. N/A Propo o.: TP2	iverse Solutions I & 2 Fenchman Ba osed Building Enve Sample No.	ay Rd, Albany WA lope 18G672	6330		Operator/Contra Equipment type: Excavation Meth Position: Elevation:	ctor: (lod : 3 r	GSG Kubol 300m 50 H 5	ta KX4 m Aug 58658	l1-3V ger 2 6116	6174		
Date Com Date Com	menced: pleted:	22.03.2018 22.03.2018	Logged By: Checked By:	M.Coffe M.Coffe	ey ey	Excavation Dime Depth 2	ensions: .0	: (m)	Wic	ith	0	.3	(m)
Depth Below Surface (mm)	Layer Depth (mm)	SOIL TYPE, Pla	Materia sticity, Colour, Par minor	al Descriptio ticle characte components	on eristics, s	, Secondary and c	other	Moist. Condition	Consistency / Strength	Cementation	Water Table	Classification Symbol	Sample/Test
0 - 1600	1600		SAND with silt: Ligh	nt grey/white, fi	ne to me	edium.		D-M	L				
4000 0000			-							DC			
1600 - 2000	400		SAND with silt: Ligh	nt brown/grey, f	tine to m	edium.		М		FC			
											1		
											τj		
											Itere		
											cour		
											le en		
											r tab		
											wate	├──	
											ź		
												<u> </u>	
												<u> </u>	
											1		
												┣──	
							-+				1	┣──	
			Comments				F	Pit Tei √	r minate or ×	ed at:	(mm)	below (level	ground
							-	Target	Depth	✓		2000	
								Cav	e In				
							—	Ren Near F	usai Refusal				
								Floo	ding				
M	aterials Consi	stency/Strength	R	ock		Comentation		ack of	f Reach				
Coh	esive	Non-Cohesive)			Gementation				▼ Wa	ter		
VS-V	ery Soft Soft	VL - Very Loos	e EL-Extro	emely Low		IN - Indurated	⊦		Wate	er tirst E	ncoun	tered	
5- F-	Firm	MD - Medium De	nse L-	Low	Р	C - Poorly Cemented	d	D	- Dry	M - N	Noist	w - w	et
St -	Stiff	D - Dense	M - N	ledium	MC	- moderately Cemen	nted		,	Ger	neral		
VSt - V	/ery Stiff	VD - Very Dens	ie H-	High	v	VC - Well Cemented	1		N/A	A - Not	Applica	able	
Н-	Hard	CO - Compact	t VH - V EH - Extre	ery High emely High					N/D) - Not [Determ	ined	

Test Pit No. 2 - Excavation

Test Pit No.2 - Spoil

Job No: Client: Project:

302TestBio Diverse SolutionsLots 1 & 2 Fenchman Bay Rd, Albany WA 6330

5 °	REAT SO	UTHERN GEO RUCTION MATERIALS T	TECHNICS ESTING	Job No 302	0	Report No 302/1		She	eet3 o	of 6		
Client: Project: Project No Location: Test Pit No	Bio D Lots 2 D. N/A Propo D.: TP3	iverse Solutions 1 & 2 Fenchman Ba osed Building Envel Sample No.	ay Rd, Albany WA ope 18G673	A 6330		Operator/Contrac Equipment type: Excavation Meth Position: Elevation:	ctor: GSG Kubo od : 300n 50 H n/a	ota KX4 nm Au 58654	41-3V ger ∙2 6116	6110		
Date Com Date Com	menced: pleted:	22.03.2018 22.03.2018	Logged By: Checked By:	M.Coffe M.Coffe	ey ey	Excavation Dime Depth 2.	nsions: 0 (m) Wio	dth	C	0.3	(m)
Depth Below Surface (mm)	Layer Depth (mm)	SOIL TYPE, Plas	Materi a ticity, Colour, Pai minor	al Descriptic rticle charact components	on eristics s	s, Secondary and c	ther Moist. Condition	Consistency / Strength	Cementation	Water Table	Classification Symbol	Sample/Test
0 - 400	400	(Topsoil)	SAND with silt: Gr	rey, fine to med	lium. Ro	ots & root fibres.	М	L				
		,										
400 - 1000	600		SAND with silt:	Light grey, fine	to medi	um.	м					PERM
1000 - 2000	1000		SAND with silt	: White, fine to	mediun	n.	М	L				
								-				
								-		ď.		
										Intere		
										ncor		
								-		tble e		
										ter ta		
										o va		
										Ž		
							D'' T					
			Comments					or ×	ed at:	(mm)	below g	ground
							Targe	et Depth	✓		2000	
							Ca	ve In				
							Near	rusai Refusal				
							Flo	oding				
Ma	aterials Consi	istency/Strength	R	ock		Cementation	Lack o	of React				
VS - V	ery Soft	VL - Very Loose	e EL - Extr	emely Low				Wat	er first E	iller Encour	ntered	
S -	Soft	L - Loose	VL - V	ery Low		IN - Indurated			Mois	sture		
F -	Firm	MD - Medium Der	ise L-	Low	F	PC - Poorly Cemented		D - Dry	M - N	/loist	W - W	et
St - VSt - V	/ery Stiff	VD - Dense VD - Very Dense	e H-	High	NIC N	WC - Well Cemented	ieu	N/J	Gen A - Not	Applica	able	
Н-	Hard	CO - Compact	VH - V FH - Fxtr	ery High emely High				N/E) - Not [Determ	ined	

Test Pit No. 3 - Excavation

Test Pit No. 3 - Spoil

GREAT SOUTHERN GEOTECHNICS

Job No: Client: Project:

302TestBio Diverse SolutionsLots 1 & 2 Fenchman Bay Rd, Albany WA 6330

5 °	REAT SO	UTHERN GEO RUCTION MATERIALS T	TECHNICS ESTING	Job No 302	0	Report No 302/1		Sh	eet4	of 6		
Client: Project: Project No Location: Test Pit No	Bio D Lots 1 p. N/A Propo p.: TP4	iverse Solutions & 2 Fenchman Ba psed Building Envel Sample No.	ıy Rd, Albany WA ope 1 8G674	. 6330		Operator/Contra Equipment type: Excavation Meth Position: Elevation:	ctor: GS Kub od: 300 50 H n/a	G iota KX mm Au I 58647	41-3V ger 79 6110	6121		
Date Com Date Com	menced: pleted:	22.03.2018 22.03.2018	Logged By: Checked By:	M.Coffe M.Coffe	ey ey	Excavation Dime Depth 2	ensions: .0 (n	ı) Wi	dth	C	.3	(m)
Depth Below Surface (mm)	Layer Depth (mm)	SOIL TYPE, Plas	Materia ticity, Colour, Par minor	al Descriptic ticle charact components	on eristics	s, Secondary and c	other Moist. Condition	Consistency / Strength	Cementation	Water Table	Classification Symbol	Sample/Test
0 - 500	500	(Topsoil)	SAND with silt: Gro	ey, fine to med	lium. Ro	oots & root fibres.	D	L				
500 - 1000	500		SAND with silt: L	light grey, fine	to medi	ium.	D					
1000 - 2000	1000		SAND with silt: Ligh	nt grey/white, fi	ne to m	edium.	М	L				
								+				
										_		
								+		terec		
										iunos		
										e end		
								_	_	tabl		
							_	+		vater		
										Ŷ		
								+	 			
								_				
								+	\vdash	1	<u> </u>	
										1		
								_	 			
			Comments				Pit	ermina	ted at:	(mm)	below o	ground
							✓	or ×	-	. ,	level	-
							Tarç	let Depth ave In	` ل	<u> </u>	2000	
								efusal	\vdash			
							Nea	r Refusa				
M	atoriale Cons	stancy/Strangth			1		FI	ooding	<u> </u>	<u> </u>		
Coh	esive	Non-Cohesive	R(ock		Cementation	Lack	UINeau	' <mark> </mark> ▼ Wa	ater		
VS - V	ery Soft	VL - Very Loose	e EL - Extre	emely Low	1			Wa	ter first l	Encour	itered	
S -	Soft	L - Loose	VL - V	ery Low	,	IN - Indurated	- I	D. Der	Moi	sture	10/ 10/	ot
F - St -	Stiff	D - Dense	ызе L - М - М	ledium	MC	- c - Poony Cementer	ited	עוט - ט	Ger	neral	vv - vv	el
VSt - V	/ery Stiff	VD - Very Dense	e H-	High	· ·	WC - Well Cemented		N	'A - Not	Applica	able	
H -	Hard	CO - Compact	VH - V EH - Extre	ery High emely High				N/I	D - Not I	Determ	ined	

Test Pit No. 4 - Excavation

Test Pit No. 4 - Spoil

GREAT SOUTHERN GEOTECHNICS

Job No: Client: Project:

302TestBio Diverse SolutionsLots 1 & 2 Fenchman Bay Rd, Albany WA 6330

S °	REAT SO	UTHERN GEO RUCTION MATERIALS T	TECHNICS ESTING	Job No 302	0	Report No 302/1		Sh	eet5 d	of 6		
Client: Project: Project No Location: Test Pit No	Bio D Lots 1 D. N/A Propo o.: TP5	iverse Solutions 1 & 2 Fenchman Ba osed Building Envel Sample No.:	y Rd, Albany WA ope 1 8G675	. 6330		Operator/Contra Equipment type: Excavation Meth Position: Elevation:	ctor: GS0 Kub od : 300 50 H n/a) ota KX mm Au I 58637	41-3V ger ′3 6116	6140		
Date Com Date Com	menced: pleted:	22.03.2018 22.03.2018	Logged By: Checked By:	M.Coffe M.Coffe	ey ey	Excavation Dime Depth 2	nsions: .0 (m) Wi	dth	C	0.3	(m)
Depth Below Surface (mm)	Layer Depth (mm)	SOIL TYPE, Plas	Materia ticity, Colour, Par minor	al Descriptic ticle charact components	on eristics	s, Secondary and c	Moist. Condition	Consistency / Strength	Cementation	Water Table	Classification Symbol	Sample/Test
0 - 300	300	(Topsoil)	SAND with silt: Gre	ey, fine to med	lium. Ro	oots & root fibres.	D	L				
										1		
300 - 800	500		SAND with silt: Ligh	it grey/white, fi	ne to m	edium.	M			-		
800 - 2000	1200	s	AND with silt: Light	t grey/yellow, f	ine to m	nedium.	М	L	PC	1		PERM
										-		
										Itere		
										ICOUL		
										le er		
										r tab		
										wate		
										Ž		
	·		Comments				Pit T	erminat	ed at:	(mm)	below g	ground
							✓ 	or ×		-	level	
							l arg	et Deptr ave In			2000	
							R	efusal				
							Nea	Refusa				
M	aterials Consi	istencv/Strength					Lack	of Reac	r			
Coh	esive	Non-Cohesive	Ro Ro	ock		Cementation			V Wa	ater		
VS - V	ery Soft	VL - Very Loose	EL - Extre	emely Low		INI landon (Wat	er first l	Encour	ntered	
ธ- F-	Son Firm	L - Loose MD - Medium Den	vL-Ve	ery Low Low	F	IN - Indurated PC - Poorly Cemented	ł	D - Drv	M - N	s τure Moist	W - W	et
St -	Stiff	D - Dense	 M - M	ledium	MC	- moderately Cemen	ted	,	Ger	neral		
VSt - V	/ery Stiff	VD - Very Dense	e H-	High	· `	WC - Well Cemented		N/	A - Not	Applica	able	
н-	naro	CO - Compact	VH - Ve EH - Extre	ery High emely High				N/I) - Not l	Determ	ined	

Test Pit No. 5 - Excavation

Test Pit No. 5 - Spoil

GREAT SOUTHERN GEOTECHNICS

Job No: Client: Project:

302TestBio Diverse SolutionsLots 1 & 2 Fenchman Bay Rd, Albany WA 6330

5 °	REAT SO	UTHERN GEC RUCTION MATERIALS T	TECHNICS TESTING	Job No 302	0	Report No 302/1		Sh	eet 6 o	of 6		
Client: Project: Project No Location: Test Pit No	Bio D Lots 1 p. N/A Propo p.: TP6	iverse Solutions l & 2 Fenchman Ba osed Building Enve Sample No.	ay Rd, Albany WA lope 18G676	6330		Operator/Contra Equipment type: Excavation Meth Position: Elevation:	ctor: GS Kub od : 300 50 I n/a	G iota KX mm Au I 58630	41-3V ger)9 611(6153		
Date Com Date Com	menced: pleted:	22.03.2018 22.03.2018	Logged By: Checked By:	M.Coffe M.Coffe	ey ey	Excavation Dime Depth 2	ensions: .0 (n	ı) Wi	dth	C	.3	(m)
Depth Below Surface (mm)	Layer Depth (mm)	SOIL TYPE, Plas	Materi a sticity, Colour, Par minor	al Descriptic ticle charact components	on eristics	s, Secondary and c	Moist. Condition	Consistency / Strength	Cementation	Water Table	Classification Symbol	Sample/Test
0 - 300	300	(Topsoil)	SAND with silt: Gr	ey, fine to med	lium. Ro	oots & root fibres.	D	L				
						-				1		
300 - 1700	1400		SAND with silt: L	₋ight grey, fine	to medi	ium.	M	L				
1700 - 2000	300		SAND with silt: B	rown/grey, fine	to med	lium.	М	L-MD	PC			
										terec		
										unoc		
										e end		
								_		table		
								+		vater		
										Ŷ		
									 			
								-	-			
								+		1	├──	
			Comments				Pit 1	erminat	ted at:	(mm)	below of	ground
							~	or ×		、…/	level	
							Tarç	et Depth	י י		2000	
								efusal	\vdash			
							Nea	r Refusa				
M	atoriale Cons	stancy/Strangth			1		FI	ooding	<u> </u>	<u> </u>		
Coh	esive	Non-Cohesive	R	ock		Cementation	Lack	orread	' <mark> </mark> ▼ Wa	ater		
VS - V	ery Soft	VL - Very Loose	e EL - Extr	emely Low				Wat	ter first l	Encour	itered	
S -	Soft	L - Loose	VL-V	ery Low	,	IN - Indurated	4		Moi	sture	10/ 10/	ot
F - St -	Stiff	D - Dense	ыс L- М-М	ledium	MC	- c - roony Cemented	ted	עוט - ט	Ger	neral	vv - vv	ει
VSt - V	ery Stiff	VD - Very Dens	e H-	High		WC - Well Cemented		N/	'A - Not	Applica	able	
Н-	Hard	CO - Compact	VH - V EH - Extr	ery High emely High				N/[D - Not I	Determ	ined	

Test Pit No. 6 - Excavation

Test Pit No. 6 - Spoil

GREAT SOUTHERN GEOTECHNICS

Job No: Client: Project:

 : 302
 Test

 Bio Diverse Solutions

 :: Lots 1 & 2 Fenchman Bay Rd, Albany WA 6330

Appendix 2 Test Results

GREAT SOUTHERN GEOTECHNICS

5a 209 Chester Pass Road, Milpara WA 6330

Mobile: 0407 903 297 Email: Info@gsgeotechnics.com

1 of 1

302

Sheet

Job No.

Dry Density / Moisture Content Relationship Test Report

Report	No.	302/1
		002/1

Client:	Bio Diverese Solutions
Project:	Lots 1 & 2 Frenchman Bay Road
Road:	Frenchman Bay Road
Section	N/A

Sample No.	Sample Location	Field Description
18G677	Test Pit 3	SAND
18G678	Test Pit 5	SAND

Sample Number		18G677 🔴	18G678 🌒	
Depth		400mm to 1000mm	800mm to 2000mm	
Stabiliser Used				
Stabiliser Added %				
Curing Poriod	Water (Days)	0.08	0.08	
Curing Fenou	Stabiliser (Hrs)			
Moisture Conten	t Method used	AS 1289.2.1.1	AS 1289.2.1.1	
Sampling Metho	d	AS 1289.1.2.1 Proc 6.5	AS 1289.1.2.1 Proc 6.5	
Date Sampled		22.03.2018	22.03.2018	
Date Received		22.03.2018	22.03.2018	
Date Tested		24.03.2018	24.03.2018	
Test Method		AS 1289.5.2.1	AS 1289.5.2.1	
Maximum Dry De	ensity t/m ³	1.64	1.71	
Optimum Moistur	re Content %	15.0	15.0	
Adjusted Maximu	um Dry Density t/m3			
Adjusted Optimum Moisture Content %				
Percentage Reta	ined % 37.5 mm	0	0	
Percentage Reta	ined % 19.0 mm	0	0	

Approved Signatory:	65
Name:	M.Coffey
Function:	Laboratory Manager
/ Kathryn Kinnear Date:	11.04.2018
	Approved Signatory: Name: Function: / Kathryn Kinnear Date:

CONSTANT HEAD PERMEABILITY - TEST REPORT

		2.1.1, 5.1.1	
Client	Bio Diverse Solutions	Ticket No.	S1555
Client Address	-	Report No.	LLS18/1362 _1_FHPERM
Project	Lots 1 & 2 Frenchman Bay Road	Sample No.	LLS18/1362
Location	Albany WA 6330	Job No.	Job No. 302
Sample Identification	Test Pit 3 - 400mm - 1000mm (18G677)		

Sampling Method:

Tested as Received

Constant Head Permeability

Laboratory Moisture Ratio (%)	99.0
Laboratory Density Ratio (%)	94.5
Compactive Effort	Modified
Hydraulic Gradient	0.6
Surcharge (kPa)	3
% Retained on 19mm Sieve	0
Coefficient of Permeability (m/sec)	4.5 x 10 (⁻ ⁶)

Comments:

AS 1289.5.2.1 Compaction Values supplied by Great Southern Geotechnics

Accredited for compliance with ISO/IEC 17025 - Testing Accreditation No. 19872 This document may not be reproduced except in full Approved Signatory

Name Function Issue Date

M. van Herk Laboratory Manager 11-April-2018

FALLING HEAD PERMEABILITY - TEST REPORT

	In accordance with AS 1289.6.7.2,	2.1.1, 5.1.1	
Client	Bio Diverse Solutions	Ticket No.	S1555
Client Address	-	Report No.	LLS18/1362_1_FHPERM
Project	Lots 1 & 2 Frenchman Bay Road	Sample No.	LLS18/1362
Location	Albany WA 6330	Job No.	Job No. 302
Sample Identification	Test Pit 5 - 800mm - 2000mm (18G678)		

Sampling Method:

Tested as Received

Falling Head Permeability

Laboratory Moisture Ratio (%)	99.5
Laboratory Density Ratio (%)	95.0
Compactive Effort	Modified
Hydraulic Gradient	0.6
Surcharge (kPa)	3
% Retained on 19mm Sieve	0
Coefficient of Permeability (m/sec)	2.6 x 10 (⁻ ⁶)

Comments:

AS 1289.5.2.1 Compaction Values supplied by Great Southern Geotechnics

Accredited for compliance with ISO/IEC 17025 - Testing Accreditation No. 19872 This document may not be reproduced except in full Approved Signatory

Name Function Issue Date

M. van Herk Laboratory Manager 11-April-2018

Appendix C

In-situ Permeability Testing - BDS (2022)

IT1 - Test 1

Time	Time after start	Level in Tube	Drop of Level	Rate of Water Level Drop
(hr:min:sec)	(min)	(cm)	(cm)	(cm/min)
	0	146.0		
	0.333333333	132.0	14.0	42.0
	0.666666667	118.0	14.0	42.0
	1	97.5	20.5	61.5
	1.333333333	80.0	17.5	52.5
	1.666666667	60.0	20.0	60.0
	2	42.5	17.5	52.5
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
Selected Steady Rate of Water Level Drop		(cm/min)	51.8	
Rate of Loss of Water from Reservoir			(cm ³ /min)	383.3

Enter data in green cells

Select Steady Rate of Water Level Drop from Rate of Water Level Drop Column (Column E) and enter in pink cell (E34). This value should be the average of three consecutive values with no more than 10% variation

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

Parameter	Symbol	Value
Depth of Water in Test Hole (cm)	Н	25
Radius of Test Hole (cm)	r	3.75
Inner Tube External Diameter (cm)	D _i	0.9
Outer Tube Internal Diameter (cm)	D _o	3.2
Rate of Water Level Drop (cm/min)	L	51.8
Inner Tube Cross Sectional Area (cm ²)	A _i	0.64
Outer Tube Cross Sectional Area (cm ²)	A _o	8.04
Flowrate (cm ³ /min)	Q	383.28
Saturated Hydraulic Conductivity (cm/min)	K _{sat}	0.2523
Saturated Hydraulic Conductivity (m/day)	K _{sat}	3.63

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

IT1 - Test 2

Time	Time after start	Level in Tube	Drop of Level	Rate of Water Level Drop
(hr:min:sec)	(min)	(cm)	(cm)	(cm/min)
	0	139.0		
	0.166666667	132.5	6.5	39.0
	0.333333333	122.5	10.0	60.0
	0.5	113.0	9.5	57.0
	0.666666667	101.3	11.7	70.2
	0.833333333	92.2	9.1	54.6
	1	81.5	10.7	64.2
	1.166666667	72.0	9.5	57.0
	1.333333333	61.0	11.0	66.0
	1.5	49.0	12.0	72.0
	1.666666667	39.5	9.5	57.0
	1.833333333	29.3	10.2	61.2
	2	19.4	9.9	59.4
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
Selected Steady Rate of Water Level Drop			(cm/min)	59.8
Rate of Loss of Water from Reservoir			(cm ³ /min)	442.9

Enter data in green cells

Select Steady Rate of Water Level Drop from Rate of Water Level Drop Column (Column E) and enter in pink cell (E34). This value should be the average of three consecutive values with no more than 10% variation

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

Parameter	Symbol	Value
Depth of Water in Test Hole (cm)	Н	25
Radius of Test Hole (cm)	r	3.75
Inner Tube External Diameter (cm)	D _i	0.9
Outer Tube Internal Diameter (cm)	D _o	3.2
Rate of Water Level Drop (cm/min)	L	59.8
Inner Tube Cross Sectional Area (cm ²)	A _i	0.64
Outer Tube Cross Sectional Area (cm ²)	A _o	8.04
Flowrate (cm ³ /min)	Q	442.90
Saturated Hydraulic Conductivity (cm/min)	K _{sat}	0.2915
Saturated Hydraulic Conductivity (m/day)	K _{sat}	4.20

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

IT1 - Test 3

Time	Time after start	Level in Tube	Drop of Level	Rate of Water Level Drop
(hr:min:sec)	(min)	(cm)	(cm)	(cm/min)
	0	132.7		
	0.166666667	124.6	8.1	48.6
	0.333333333	114.4	10.2	61.2
	0.5	104.2	10.2	61.2
	0.666666667	96.4	7.8	46.8
	0.833333333	86.5	9.9	59.4
	1	74.6	11.9	71.4
	1.166666667	65.3	9.3	55.8
	1.333333333	55.2	10.1	60.6
	1.5	44.4	10.8	64.8
	1.666666667	35.4	9.0	54.0
	1.833333333	21.2	14.2	85.2
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
Selected Steady Rate of Water Level Drop			(cm/min)	60.8
Rate of Loss of Wa	ater from Reservoir		(cm ³ /min)	450.4

Enter data in green cells

Select Steady Rate of Water Level Drop from Rate of Water Level Drop Column (Column E) and enter in pink cell (E34). This value should be the average of three consecutive values with no more than 10% variation

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

Parameter	Symbol	Value
Depth of Water in Test Hole (cm)	Н	25
Radius of Test Hole (cm)	r	3.75
Inner Tube External Diameter (cm)	D _i	0.9
Outer Tube Internal Diameter (cm)	D _o	3.2
Rate of Water Level Drop (cm/min)	L	60.8
Inner Tube Cross Sectional Area (cm ²)	A _i	0.64
Outer Tube Cross Sectional Area (cm ²)	A _o	8.04
Flowrate (cm ³ /min)	Q	450.44
Saturated Hydraulic Conductivity (cm/min)	K _{sat}	0.2965
Saturated Hydraulic Conductivity (m/day)	K _{sat}	4.27

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

IT2 - Test 1

Time	Time after start	Level in Tube	Drop of Level	Rate of Water Level Drop
(hr:min:sec)	(min)	(cm)	(cm)	(cm/min)
	0	135.2		
	0.333333333	129.8	5.4	16.2
	0.666666667	124.2	5.6	16.8
	1	118.5	5.7	17.1
	1.333333333	114.2	4.3	12.9
	1.666666667	108.4	5.8	17.4
	2	102.5	5.9	17.7
	2.333333333	96.4	6.1	18.3
	2.666666667	90.6	5.8	17.4
	3	86.2	4.4	13.2
	3.333333333	80.3	5.9	17.7
	3.666666667	74.3	6.0	18.0
	4	68.1	6.2	18.6
	4.333333333	63.5	4.6	13.8
	4.666666667	57.1	6.4	19.2
	5	50.9	6.2	18.6
	5.333333333	44.8	6.1	18.3
	5.666666667	39.2	5.6	16.8
	6	33.5	5.7	17.1
	6.333333333	28.0	5.5	16.5
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
Selected Steady Rate of Water Level Drop			(cm/min)	16.9
Rate of Loss of Wa	Rate of Loss of Water from Reservoir			125.4

Enter data in green cells

Select Steady Rate of Water Level Drop from Rate of Water Level Drop Column (Column E) and enter in pink cell (E34). This value should be the average of three consecutive values with no more than 10% variation

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

Parameter	Symbol	Value
Depth of Water in Test Hole (cm)	Н	25
Radius of Test Hole (cm)	r	3.75
Inner Tube External Diameter (cm)	D _i	0.9
Outer Tube Internal Diameter (cm)	D _o	3.2
Rate of Water Level Drop (cm/min)	L	16.9
Inner Tube Cross Sectional Area (cm ²)	A _i	0.64
Outer Tube Cross Sectional Area (cm ²)	A _o	8.04
Flowrate (cm ³ /min)	Q	125.36
Saturated Hydraulic Conductivity (cm/min)	K _{sat}	0.0825
Saturated Hydraulic Conductivity (m/day)	K _{sat}	1.19

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

IT2 - Test 2

Time	Time after start	Level in Tube	Drop of Level	Rate of Water Level Drop
(hr:min:sec)	(min)	(cm)	(cm)	(cm/min)
	0	140.1		
	0.333333333	136.1	4.0	12.0
	0.666666667	131.2	4.9	14.7
	1	126.1	5.1	15.3
	1.333333333	121.0	5.1	15.3
	1.666666667	115.0	6.0	18.0
	2	109.5	5.5	16.5
	2.333333333	104.0	5.5	16.5
	2.666666667	99.0	5.0	15.0
	3	93.5	5.5	16.5
	3.333333333	88.1	5.4	16.2
	3.666666667	82.1	6.0	18.0
	4	76.6	5.5	16.5
	4.333333333	71.2	5.4	16.2
	4.666666667	65.6	5.6	16.8
	5	60.0	5.6	16.8
	5.333333333	54.5	5.5	16.5
	5.666666667	48.1	6.4	19.2
	6	42.8	5.3	15.9
	6.333333333	37.0	5.8	17.4
	6.666666667	30.8	6.2	18.6
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
Selected Steady Rate of Water Level Drop			(cm/min)	16.4
Rate of Loss of Wa	ater from Reservoir		(cm ³ /min)	121.4

Enter data in green cells

Select Steady Rate of Water Level Drop from Rate of Water Level Drop Column (Column E) and enter in pink cell (E34). This value should be the average of three consecutive values with no more than 10% variation

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

Parameter	Symbol	Value
Depth of Water in Test Hole (cm)	Н	25
Radius of Test Hole (cm)	r	3.75
Inner Tube External Diameter (cm)	D _i	0.9
Outer Tube Internal Diameter (cm)	D _o	3.2
Rate of Water Level Drop (cm/min)	L	16.4
Inner Tube Cross Sectional Area (cm ²)	A _i	0.64
Outer Tube Cross Sectional Area (cm ²)	A _o	8.04
Flowrate (cm ³ /min)	Q	121.43
Saturated Hydraulic Conductivity (cm/min)	K _{sat}	0.0799
Saturated Hydraulic Conductivity (m/day)	K _{sat}	1.15

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

IT2 - Test 3

Time	Time after start	Level in Tube	Drop of Level	Rate of Water Level Drop
(hr:min:sec)	(min)	(cm)	(cm)	(cm/min)
	0	134.1		
	0.333333333	129.2	4.9	14.7
	0.666666667	124.0	5.2	15.6
	1	118.2	5.8	17.4
	1.333333333	112.3	5.9	17.7
	1.666666667	106.4	5.9	17.7
	2	100.2	6.2	18.6
	2.333333333	93.2	7.0	21.0
	2.666666667	88.0	5.2	15.6
	3	81.9	6.1	18.3
	3.333333333	75.6	6.3	18.9
	3.666666667	69.5	6.1	18.3
	4	63.0	6.5	19.5
	4.333333333	56.4	6.6	19.8
	4.666666667	49.8	6.6	19.8
	5	42.9	6.9	20.7
	5.333333333	36.5	6.4	19.2
	5.666666667	29.8	6.7	20.1
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
			0.0	0.0
Selected Steady Rate of Water Level Drop		(cm/min)	18.4	
Rate of Loss of Water from Reservoir			(cm ³ /min)	136.3

Enter data in green cells

Select Steady Rate of Water Level Drop from Rate of Water Level Drop Column (Column E) and enter in pink cell (E34). This value should be the average of three consecutive values with no more than 10% variation

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data

Parameter	Symbol	Value
Depth of Water in Test Hole (cm)	Н	25
Radius of Test Hole (cm)	r	3.75
Inner Tube External Diameter (cm)	D _i	0.9
Outer Tube Internal Diameter (cm)	D _o	3.2
Rate of Water Level Drop (cm/min)	L	18.4
Inner Tube Cross Sectional Area (cm ²)	A _i	0.64
Outer Tube Cross Sectional Area (cm ²)	A _o	8.04
Flowrate (cm ³ /min)	Q	136.32
Saturated Hydraulic Conductivity (cm/min)	K _{sat}	0.0897
Saturated Hydraulic Conductivity (m/day)	K _{sat}	1.29

Disclaimer: CET does not warrant data produced by use of this spreadsheet or any interpretation based on that data